可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a large data.frame that was generated by a process outside my control, which may or may not contain variables with zero variance (i.e. all the observations are the same). I would like to build a predictive model based on this data, and obviously these variables are of no use.
Here's the function I'm currently using to remove such variables from the data.frame. It's currently based on apply
, and I was wondering if there are any obvious ways to speed this function up, so that it works quickly on very large datasets, with a large number (400 or 500) of variables?
set.seed(1)
dat <- data.frame(
A=factor(rep("X",10),levels=c('X','Y')),
B=round(runif(10)*10),
C=rep(10,10),
D=c(rep(10,9),1),
E=factor(rep("A",10)),
F=factor(rep(c("I","J"),5)),
G=c(rep(10,9),NA)
)
zeroVar <- function(data, useNA = 'ifany') {
out <- apply(data, 2, function(x) {length(table(x, useNA = useNA))})
which(out==1)
}
And here's the result of the process:
> dat
A B C D E F G
1 X 3 10 10 A I 10
2 X 4 10 10 A J 10
3 X 6 10 10 A I 10
4 X 9 10 10 A J 10
5 X 2 10 10 A I 10
6 X 9 10 10 A J 10
7 X 9 10 10 A I 10
8 X 7 10 10 A J 10
9 X 6 10 10 A I 10
10 X 1 10 1 A J NA
> dat[,-zeroVar(dat)]
B D F G
1 3 10 I 10
2 4 10 J 10
3 6 10 I 10
4 9 10 J 10
5 2 10 I 10
6 9 10 J 10
7 9 10 I 10
8 7 10 J 10
9 6 10 I 10
10 1 1 J NA
> dat[,-zeroVar(dat, useNA = 'no')]
B D F
1 3 10 I
2 4 10 J
3 6 10 I
4 9 10 J
5 2 10 I
6 9 10 J
7 9 10 I
8 7 10 J
9 6 10 I
10 1 1 J
回答1:
Don't use table()
- very slow for such things. One option is length(unique(x))
:
foo <- function(dat) {
out <- lapply(dat, function(x) length(unique(x)))
want <- which(!out > 1)
unlist(want)
}
system.time(replicate(1000, zeroVar(dat)))
system.time(replicate(1000, foo(dat)))
Which is an order magnitude faster than yours on the example data set whilst giving similar output:
> system.time(replicate(1000, zeroVar(dat)))
user system elapsed
3.334 0.000 3.335
> system.time(replicate(1000, foo(dat)))
user system elapsed
0.324 0.000 0.324
Simon's solution here is similarly quick on this example:
> system.time(replicate(1000, which(!unlist(lapply(dat,
+ function(x) 0 == var(if (is.factor(x)) as.integer(x) else x))))))
user system elapsed
0.392 0.000 0.395
but you'll have to see if they scale similarly to real problem sizes.
回答2:
You may also want to look into the nearZeroVar()
function in the caret package.
If you have one event out of 1000, it might be a good idea to discard these data (but this depends on the model). nearZeroVar()
can do that.
回答3:
Simply don't use table
- it's extremely slow on numeric vectors since it converts them to strings. I would probably use something like
var0 <- unlist(lapply(df, function(x) 0 == var(if (is.factor(x)) as.integer(x) else x)))
It will be TRUE
for 0-variance, NA
for columns with NAs and FALSE
for non-zero variance
回答4:
Use the Caret
Package and the function nearZeroVar
require(caret)
NZV<- nearZeroVar(dataset, saveMetrics = TRUE)
NZV[NZV[,"zeroVar"] > 0, ]
NZV[NZV[,"zeroVar"] + NZV[,"nzv"] > 0, ]
回答5:
Well, save yourself some coding time:
Rgames: foo
[,1] [,2] [,3]
[1,] 1 1e+00 1
[2,] 1 2e+00 1
[3,] 1 3e+00 1
[4,] 1 4e+00 1
[5,] 1 5e+00 1
[6,] 1 6e+00 2
[7,] 1 7e+00 3
[8,] 1 8e+00 1
[9,] 1 9e+00 1
[10,] 1 1e+01 1
Rgames: sd(foo)
[1] 0.000000e+00 3.027650e+00 6.749486e-01
Warning message:
sd(<matrix>) is deprecated.
Use apply(*, 2, sd) instead.
To avoid nasty floating-point roundoffs, take that output vector, which I'll call "bar," and do something like bar[bar< 2*.Machine$double.eps] <- 0
and then finally your data frame dat[,as.logical(bar)]
should do the trick.
回答6:
How about using factor
to count the number of unique elements and looping with sapply
:
dat[sapply(dat, function(x) length(levels(factor(x)))>1)]
B D F
1 3 10 I
2 4 10 J
3 6 10 I
4 9 10 J
5 2 10 I
6 9 10 J
7 9 10 I
8 7 10 J
9 6 10 I
10 1 1 J
NAs are excluded by default, but this can be changed with the exclude
parameter of factor
:
dat[sapply(dat, function(x) length(levels(factor(x,exclude=NULL)))>1)]
B D F G
1 3 10 I 10
2 4 10 J 10
3 6 10 I 10
4 9 10 J 10
5 2 10 I 10
6 9 10 J 10
7 9 10 I 10
8 7 10 J 10
9 6 10 I 10
10 1 1 J NA
回答7:
I think having zero variance is equivalent to being constant and one can get around without doing any arithmetic operations at all. I would expect that range() outperforms var(), but I have not verified this:
removeConstantColumns <- function(a_dataframe, verbose=FALSE) {
notConstant <- function(x) {
if (is.factor(x)) x <- as.integer(x)
return (0 != diff(range(x, na.rm=TRUE)))
}
bkeep <- sapply(a_dataframe, notConstant)
if (verbose) {
cat('removeConstantColumns: '
, ifelse(all(bkeep)
, 'nothing'
, paste(names(a_dataframe)[!bkeep], collapse=',')
, ' removed', '\n')
}
return (a_dataframe[, bkeep])
}
回答8:
Check this custom function. I did not try it on data frames with 100+ variables.
remove_low_variance_cols <- function(df, threshold = 0) {
n <- Sys.time() #See how long this takes to run
remove_cols <- df %>%
select_if(is.numeric) %>%
map_dfr(var) %>%
gather() %>%
filter(value <= threshold) %>%
spread(key, value) %>%
names()
if(length(remove_cols)) {
print("Removing the following columns: ")
print(remove_cols)
}else {
print("There are no low variance columns with this threshold")
}
#How long did this script take?
print(paste("Time Consumed: ", Sys.time() - n, "Secs."))
return(df[, setdiff(names(df), remove_cols)])
}