Consider the Markov chain with state space S = {1, 2}, transition matrix
and initial distribution α = (1/2, 1/2).
Simulate 5 steps of the Markov chain (that is, simulate X0, X1, . . . , X5). Repeat the simulation 100
times. Use the results of your simulations to solve the following problems.
- Estimate P(X1 = 1|X0 = 1). Compare your result with the exact probability.
My solution:
# returns Xn
func2 <- function(alpha1, mat1, n1)
{
xn <- alpha1 %*% matrixpower(mat1, n1+1)
return (xn)
}
alpha <- c(0.5, 0.5)
mat <- matrix(c(0.5, 0.5, 0, 1), nrow=2, ncol=2)
n <- 10
for (variable in 1:100)
{
print(func2(alpha, mat, n))
}
What is the difference if I run this code once or 100 times (as is said in the problem-statement)?
How can I find the conditional probability from here on?
Let
alpha <- c(1, 1) / 2
mat <- matrix(c(1 / 2, 0, 1 / 2, 1), nrow = 2, ncol = 2) # Different than yours
be the initial distribution and the transition matrix. Your func2
only finds n-th step distribution, which isn't needed, and doesn't simulate anything. Instead we may use
chainSim <- function(alpha, mat, n) {
out <- numeric(n)
out[1] <- sample(1:2, 1, prob = alpha)
for(i in 2:n)
out[i] <- sample(1:2, 1, prob = mat[out[i - 1], ])
out
}
where out[1]
is generated using only the initial distribution and then for subsequent terms we use the transition matrix.
Then we have
set.seed(1)
# Doing once
chainSim(alpha, mat, 1 + 5)
# [1] 2 2 2 2 2 2
so that the chain initiated at 2 and got stuck there due to the specified transition probabilities.
Doing it for 100 times we have
# Doing 100 times
sim <- replicate(chainSim(alpha, mat, 1 + 5), n = 100)
rowMeans(sim - 1)
# [1] 0.52 0.78 0.87 0.94 0.99 1.00
where the last line shows how often we ended up in state 2 rather than 1. That gives one (out of many) reasons why 100 repetitions are more informative: we got stuck at state 2 doing just a single simulation, while repeating it for 100 times we explored more possible paths.
Then the conditional probability can be found with
mean(sim[2, sim[1, ] == 1] == 1)
# [1] 0.4583333
while the true probability is 0.5 (given by the upper left entry of the transition matrix).