I need a fast and efficient implementation for finding the index of the maximum value in an array in CUDA. This operation needs to be performed several times. I originally used cublasIsamax for this, however, it sadly returns the index of the maximum absolute value, which is not what I want. Instead, I'm using thrust::max_element, however the speed is rather slow in comparison to cublasIsamax. I use it in the following manner:
//d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;
The number of elements in the vector range between 10'000 and 20'000. The difference in speed between thrust::max_element and cublasIsamax is rather big. Perhaps I'm performing several memory transactions without knowing?
A more efficient implementation would be to write your own max-index reduction code in CUDA. It's likely that cublasIsamax
is using something like this under the hood.
We can compare 3 approaches:
thrust::max_element
cublasIsamax
- custom CUDA kernel
Here's a fully worked example:
$ cat t665.cu
#include <cublas_v2.h>
#include <thrust/extrema.h>
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <iostream>
#include <stdlib.h>
#define DSIZE 10000
// nTPB should be a power-of-2
#define nTPB 256
#define MAX_KERNEL_BLOCKS 30
#define MAX_BLOCKS ((DSIZE/nTPB)+1)
#define MIN(a,b) ((a>b)?b:a)
#define FLOAT_MIN -1.0f
#include <time.h>
#include <sys/time.h>
unsigned long long dtime_usec(unsigned long long prev){
#define USECPSEC 1000000ULL
timeval tv1;
gettimeofday(&tv1,0);
return ((tv1.tv_sec * USECPSEC)+tv1.tv_usec) - prev;
}
__device__ volatile float blk_vals[MAX_BLOCKS];
__device__ volatile int blk_idxs[MAX_BLOCKS];
__device__ int blk_num = 0;
template <typename T>
__global__ void max_idx_kernel(const T *data, const int dsize, int *result){
__shared__ volatile T vals[nTPB];
__shared__ volatile int idxs[nTPB];
__shared__ volatile int last_block;
int idx = threadIdx.x+blockDim.x*blockIdx.x;
last_block = 0;
T my_val = FLOAT_MIN;
int my_idx = -1;
// sweep from global memory
while (idx < dsize){
if (data[idx] > my_val) {my_val = data[idx]; my_idx = idx;}
idx += blockDim.x*gridDim.x;}
// populate shared memory
vals[threadIdx.x] = my_val;
idxs[threadIdx.x] = my_idx;
__syncthreads();
// sweep in shared memory
for (int i = (nTPB>>1); i > 0; i>>=1){
if (threadIdx.x < i)
if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
__syncthreads();}
// perform block-level reduction
if (!threadIdx.x){
blk_vals[blockIdx.x] = vals[0];
blk_idxs[blockIdx.x] = idxs[0];
if (atomicAdd(&blk_num, 1) == gridDim.x - 1) // then I am the last block
last_block = 1;}
__syncthreads();
if (last_block){
idx = threadIdx.x;
my_val = FLOAT_MIN;
my_idx = -1;
while (idx < gridDim.x){
if (blk_vals[idx] > my_val) {my_val = blk_vals[idx]; my_idx = blk_idxs[idx]; }
idx += blockDim.x;}
// populate shared memory
vals[threadIdx.x] = my_val;
idxs[threadIdx.x] = my_idx;
__syncthreads();
// sweep in shared memory
for (int i = (nTPB>>1); i > 0; i>>=1){
if (threadIdx.x < i)
if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
__syncthreads();}
if (!threadIdx.x)
*result = idxs[0];
}
}
int main(){
int nrElements = DSIZE;
float *d_vector, *h_vector;
h_vector = new float[DSIZE];
for (int i = 0; i < DSIZE; i++) h_vector[i] = rand()/(float)RAND_MAX;
h_vector[10] = 10; // create definite max element
cublasHandle_t my_handle;
cublasStatus_t my_status = cublasCreate(&my_handle);
cudaMalloc(&d_vector, DSIZE*sizeof(float));
cudaMemcpy(d_vector, h_vector, DSIZE*sizeof(float), cudaMemcpyHostToDevice);
int max_index = 0;
unsigned long long dtime = dtime_usec(0);
//d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;
cudaDeviceSynchronize();
dtime = dtime_usec(dtime);
std::cout << "thrust time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
max_index = 0;
dtime = dtime_usec(0);
my_status = cublasIsamax(my_handle, DSIZE, d_vector, 1, &max_index);
cudaDeviceSynchronize();
dtime = dtime_usec(dtime);
std::cout << "cublas time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
max_index = 0;
int *d_max_index;
cudaMalloc(&d_max_index, sizeof(int));
dtime = dtime_usec(0);
max_idx_kernel<<<MIN(MAX_KERNEL_BLOCKS, ((DSIZE+nTPB-1)/nTPB)), nTPB>>>(d_vector, DSIZE, d_max_index);
cudaMemcpy(&max_index, d_max_index, sizeof(int), cudaMemcpyDeviceToHost);
dtime = dtime_usec(dtime);
std::cout << "kernel time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
return 0;
}
$ nvcc -O3 -arch=sm_20 -o t665 t665.cu -lcublas
$ ./t665
thrust time: 0.00075 max index: 10
cublas time: 6.3e-05 max index: 11
kernel time: 2.5e-05 max index: 10
$
Notes:
- CUBLAS returns an index 1 higher than the others because CUBLAS uses 1-based indexing.
- CUBLAS might be quicker if you used
CUBLAS_POINTER_MODE_DEVICE
, however for validation you would still have to copy the result back to the host.
- CUBLAS with
CUBLAS_POINTER_MODE_DEVICE
should be asynchronous, so the cudaDeviceSynchronize()
will be desirable for the host based timing I've shown here. In some cases, thrust can be asynchronous as well.
- For convenience and results comparison between CUBLAS and the other methods, I am using all nonnegative values for my data. You may want to adjust the
FLOAT_MIN
value if you are using negative values as well.
- If you're freaky about performance, you can try tuning the
nTPB
and MAX_KERNEL_BLOCKS
parameters to see if you can max out performance on your specific GPU. The kernel code also arguably leaves some performance on the table by not switching carefully into a warp-synchronous mode for the final stages of the (two) threadblock reduction(s).
- The threadblock reduction kernel uses a block-draining/last-block strategy to avoid the overhead of an additional kernel launch to perform the final reduction.