thrust::max_element slow in comparison cublasIsama

2020-02-06 17:56发布

问题:

I need a fast and efficient implementation for finding the index of the maximum value in an array in CUDA. This operation needs to be performed several times. I originally used cublasIsamax for this, however, it sadly returns the index of the maximum absolute value, which is not what I want. Instead, I'm using thrust::max_element, however the speed is rather slow in comparison to cublasIsamax. I use it in the following manner:

//d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;

The number of elements in the vector range between 10'000 and 20'000. The difference in speed between thrust::max_element and cublasIsamax is rather big. Perhaps I'm performing several memory transactions without knowing?

回答1:

A more efficient implementation would be to write your own max-index reduction code in CUDA. It's likely that cublasIsamax is using something like this under the hood.

We can compare 3 approaches:

  1. thrust::max_element
  2. cublasIsamax
  3. custom CUDA kernel

Here's a fully worked example:

$ cat t665.cu
#include <cublas_v2.h>
#include <thrust/extrema.h>
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <iostream>
#include <stdlib.h>

#define DSIZE 10000
// nTPB should be a power-of-2
#define nTPB 256
#define MAX_KERNEL_BLOCKS 30
#define MAX_BLOCKS ((DSIZE/nTPB)+1)
#define MIN(a,b) ((a>b)?b:a)
#define FLOAT_MIN -1.0f

#include <time.h>
#include <sys/time.h>

unsigned long long dtime_usec(unsigned long long prev){
#define USECPSEC 1000000ULL
  timeval tv1;
  gettimeofday(&tv1,0);
  return ((tv1.tv_sec * USECPSEC)+tv1.tv_usec) - prev;
}

__device__ volatile float blk_vals[MAX_BLOCKS];
__device__ volatile int   blk_idxs[MAX_BLOCKS];
__device__ int   blk_num = 0;

template <typename T>
__global__ void max_idx_kernel(const T *data, const int dsize, int *result){

  __shared__ volatile T   vals[nTPB];
  __shared__ volatile int idxs[nTPB];
  __shared__ volatile int last_block;
  int idx = threadIdx.x+blockDim.x*blockIdx.x;
  last_block = 0;
  T   my_val = FLOAT_MIN;
  int my_idx = -1;
  // sweep from global memory
  while (idx < dsize){
    if (data[idx] > my_val) {my_val = data[idx]; my_idx = idx;}
    idx += blockDim.x*gridDim.x;}
  // populate shared memory
  vals[threadIdx.x] = my_val;
  idxs[threadIdx.x] = my_idx;
  __syncthreads();
  // sweep in shared memory
  for (int i = (nTPB>>1); i > 0; i>>=1){
    if (threadIdx.x < i)
      if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
    __syncthreads();}
  // perform block-level reduction
  if (!threadIdx.x){
    blk_vals[blockIdx.x] = vals[0];
    blk_idxs[blockIdx.x] = idxs[0];
    if (atomicAdd(&blk_num, 1) == gridDim.x - 1) // then I am the last block
      last_block = 1;}
  __syncthreads();
  if (last_block){
    idx = threadIdx.x;
    my_val = FLOAT_MIN;
    my_idx = -1;
    while (idx < gridDim.x){
      if (blk_vals[idx] > my_val) {my_val = blk_vals[idx]; my_idx = blk_idxs[idx]; }
      idx += blockDim.x;}
  // populate shared memory
    vals[threadIdx.x] = my_val;
    idxs[threadIdx.x] = my_idx;
    __syncthreads();
  // sweep in shared memory
    for (int i = (nTPB>>1); i > 0; i>>=1){
      if (threadIdx.x < i)
        if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
      __syncthreads();}
    if (!threadIdx.x)
      *result = idxs[0];
    }
}

int main(){

  int nrElements = DSIZE;
  float *d_vector, *h_vector;
  h_vector = new float[DSIZE];
  for (int i = 0; i < DSIZE; i++) h_vector[i] = rand()/(float)RAND_MAX;
  h_vector[10] = 10;  // create definite max element
  cublasHandle_t my_handle;
  cublasStatus_t my_status = cublasCreate(&my_handle);
  cudaMalloc(&d_vector, DSIZE*sizeof(float));
  cudaMemcpy(d_vector, h_vector, DSIZE*sizeof(float), cudaMemcpyHostToDevice);
  int max_index = 0;
  unsigned long long dtime = dtime_usec(0);
  //d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
  thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
  thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
  max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;
  cudaDeviceSynchronize();
  dtime = dtime_usec(dtime);
  std::cout << "thrust time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
  max_index = 0;
  dtime = dtime_usec(0);
  my_status = cublasIsamax(my_handle, DSIZE, d_vector, 1, &max_index);
  cudaDeviceSynchronize();
  dtime = dtime_usec(dtime);
  std::cout << "cublas time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
  max_index = 0;
  int *d_max_index;
  cudaMalloc(&d_max_index, sizeof(int));
  dtime = dtime_usec(0);
  max_idx_kernel<<<MIN(MAX_KERNEL_BLOCKS, ((DSIZE+nTPB-1)/nTPB)), nTPB>>>(d_vector, DSIZE, d_max_index);
  cudaMemcpy(&max_index, d_max_index, sizeof(int), cudaMemcpyDeviceToHost);
  dtime = dtime_usec(dtime);
  std::cout << "kernel time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;


  return 0;
}
$ nvcc -O3 -arch=sm_20 -o t665 t665.cu -lcublas
$ ./t665
thrust time: 0.00075 max index: 10
cublas time: 6.3e-05 max index: 11
kernel time: 2.5e-05 max index: 10
$

Notes:

  1. CUBLAS returns an index 1 higher than the others because CUBLAS uses 1-based indexing.
  2. CUBLAS might be quicker if you used CUBLAS_POINTER_MODE_DEVICE, however for validation you would still have to copy the result back to the host.
  3. CUBLAS with CUBLAS_POINTER_MODE_DEVICE should be asynchronous, so the cudaDeviceSynchronize() will be desirable for the host based timing I've shown here. In some cases, thrust can be asynchronous as well.
  4. For convenience and results comparison between CUBLAS and the other methods, I am using all nonnegative values for my data. You may want to adjust the FLOAT_MIN value if you are using negative values as well.
  5. If you're freaky about performance, you can try tuning the nTPB and MAX_KERNEL_BLOCKS parameters to see if you can max out performance on your specific GPU. The kernel code also arguably leaves some performance on the table by not switching carefully into a warp-synchronous mode for the final stages of the (two) threadblock reduction(s).
  6. The threadblock reduction kernel uses a block-draining/last-block strategy to avoid the overhead of an additional kernel launch to perform the final reduction.