可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I want to generate 6 different random numbers by using Math.random and store them into an array.
How can I make sure that they are different? I know I need to use for-loop to check the array but how...
This is the range. I only need numbers between 1 and 49.
( 1 + (int) (Math.random() * 49) )
回答1:
In Java 8:
final int[] ints = new Random().ints(1, 50).distinct().limit(6).toArray();
In Java 7:
public static void main(final String[] args) throws Exception {
final Random random = new Random();
final Set<Integer> intSet = new HashSet<>();
while (intSet.size() < 6) {
intSet.add(random.nextInt(49) + 1);
}
final int[] ints = new int[intSet.size()];
final Iterator<Integer> iter = intSet.iterator();
for (int i = 0; iter.hasNext(); ++i) {
ints[i] = iter.next();
}
System.out.println(Arrays.toString(ints));
}
Just a little messier. Not helped by the fact that it's pretty tedious to unbox the Set<Integer>
into an int[]
.
It should be noted that this solution should be fine of the number of required values is significantly smaller than the range. As 1..49
is quite a lot larger than 6
you're fine. Otherwise performance rapidly degrades.
回答2:
Create a list containing the numbers 1 to 49.
Create a random number x
between 0 and the size of the list, take the number being at index x
in the list, and remove it from the list.
Repeat the previous step 5 times. And you're done. Note that java.util.Random
has a nextInt(int max)
method that you should use instead of Math.random()
.
Note regarding performance: this solution has an advantage compared to the "try until you get 6 different numbers" various solutions: it runs in a O(n) time. It doesn't matter much for 6 unique numbers out of 50, but if you want to get 48 or 49 unique random numbers out of 50, you'll start seeing a difference, because you might have to generate many random numbers before getting one that isn't already in the set.
EDIT:
to reduce the cost induced by the removal of the elements in the list, you could instead simply replace the element at index x
with the last element of the list (and at the second iteration, with the element at size - 2, etc.)
回答3:
You can use a Set
.
Set<Integer> s = new HashSet<>();
while(s.size() != 6){
s.add(1 + (int) (Math.random() * 49));
}
Integer[] arr = s.toArray(new Integer[s.size()]);
This is enough to do this in your case because the number of distinct random numbers is relatively small compared to the size of the range you generate them.
Otherwise I would go with @JBNizet approach.
回答4:
Generate any 6 numbers (not necessarily different). Order them.
a1 <= a2 <= a3 <= a4 <= a5 <= a6
Now take these 6 numbers
a1 < a2 + 1 < a3 + 2 < a4 + 3 < a5 + 4 < a6 + 5
These 6 are different and random.
The idea of this construct comes from some combinatorial proofs.
Its advantage is that it's simple, fast, and deterministic.
I think the time complexity is O(count*log(count))
.
I wonder if it can be improved.
import java.util.TreeMap;
public class Test005 {
public static void main(String[] args) {
int count = 6;
int min = 1;
int max = 49;
// random number mapped to the count of its occurrences
TreeMap<Integer, Integer> mp = new TreeMap<Integer, Integer>();
for (int i=0; i<count; i++){
int d = ( min + (int) (Math.random() * (max-count+1)) );
if (!mp.containsKey(d)){
mp.put(d, 0);
}
mp.put(d, mp.get(d) + 1);
}
// now ensure the output numbers are different
int j = 0;
for (int num : mp.keySet()){
int cnt = mp.get(num);
for (int i=0; i<cnt; i++){
System.out.println(num + j);
j++;
}
}
}
}
回答5:
I've just came up with a small idea for Java 8-.
Set<Integer> set = new LinkedHashSet<>();
while(set.size() != 6)
set.add(rnd.nextInt(49) + 1);
回答6:
Instead of checking that the array has no duplicates, you can use a bit more smartness while generating the numbers, such that uniqueness is enforced at the outset.
- Create a
boolean[]
as long as your range (49 entries);
- generate a random number from the full range;
- put that number into your output array;
- "cross out" the corresponding index in the
boolean[]
;
- now generate another random number, but curtail the range by one (now 48);
- instead of directly using that number as output, scan your
boolean[]
, counting all the non-crossed entries. Stop when you reach the count equal to the random number generated in step 5. The number corresponding to that entry is your output number;
- go to step 4.
回答7:
in your case n=6
public static int[] chooseAny(int n){
int[] lottery = new int[n];
int[] chooseFrom = new int[49];
for(int i=1 ; i <= 49 ; i++)
chooseFrom[i-1] = i;
Random rand = new Random();
int N = 49;
int index;
for(int i=0 ; i < n ; i++){
//pick random index
index = rand.nextInt(N);
lottery[i] = chooseFrom[index];
chooseFrom[index] = chooseFrom[N-1];
N--;
}
return lottery;
}
回答8:
Just keep generating numbers and adding them to the array as long as they are unique; psuedocode:
num = genNextRand()
For (array length)
If (num not in array)
addToArray()
Repeat while length not equal 6
回答9:
Create a variable last; initialize it to 0
.
Next, in a loop x from 0 to 5, create a random number between last+1
and 49-6+x
. Store this number in a list, and set last
to the number generated this way.
You will end up with an ordered list of 6 random numbers in the range of 1..49 with no repeats.
回答10:
That code generate numbers from 6 to 0 and save in ArrayList.
If generated number was duplicated the program generate numbers again.
If generated number is different that number is added.
Code:
private ArrayList<Integer> arraylist = new ArrayList<Integer>();
private Random rand = new Random();
public void insertNumber() {
while (true) {
int i = generateNumber();
if(!isGenerateNumberExists(i)){
addNumber(i);
break;
}
}
}
//Generate numbers
private int generateNumber() {
return rand.nextInt(6);
}
//Confirm if that number exists
private boolean isGenerateNumberExists(int y) {
for (int num : arraylist) {
if (num == y) {
return true;
}
}
return false;
}
//Add number to arrayList
private void addNumber(int x) {
arraylist.add(x);
}