Angle between 3 points in 3d space

2020-02-04 15:28发布

问题:

I have 3 points containing X, Y, Z coordinates:

var A = {x: 100, y: 100, z: 80},
    B = {x: 100, y: 175, z: 80},
    C = {x: 100, y: 100, z: 120};

The coordinates are pixels from a 3d CSS transform. How can I get the angle between vectors BA and BC? A math formula will do, JavaScript code will be better. Thank you.

回答1:

In pseudo-code, the vector BA (call it v1) is:

v1 = {A.x - B.x, A.y - B.y, A.z - B.z}

Similarly the vector BC (call it v2) is:

v2 = {C.x - B.x, C.y - B.y, C.z - B.z}

The dot product of v1 and v2 is a function of the cosine of the angle between them (it's scaled by the product of their magnitudes). So first normalize v1 and v2:

v1mag = sqrt(v1.x * v1.x + v1.y * v1.y + v1.z * v1.z)
v1norm = {v1.x / v1mag, v1.y / v1mag, v1.z / v1mag}

v2mag = sqrt(v2.x * v2.x + v2.y * v2.y + v2.z * v2.z)
v2norm = {v2.x / v2mag, v2.y / v2mag, v2.z / v2mag}

Then calculate the dot product:

res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z

And finally, recover the angle:

angle = acos(res)


回答2:

double GetAngleABC( double* a, double* b, double* c )
{
    double ab[3] = { b[0] - a[0], b[1] - a[1], b[2] - a[2] };
    double bc[3] = { c[0] - b[0], c[1] - b[1], c[2] - b[2]  };

    double abVec = sqrt(ab[0] * ab[0] + ab[1] * ab[1] + ab[2] * ab[2]);
    double bcVec = sqrt(bc[0] * bc[0] + bc[1] * bc[1] + bc[2] * bc[2]);

    double abNorm[3] = {ab[0] / abVec, ab[1] / abVec, ab[2] / abVec};
    double bcNorm[3] = {bc[0] / bcVec, bc[1] / bcVec, bc[2] / bcVec};

    double res = abNorm[0] * bcNorm[0] + abNorm[1] * bcNorm[1] + abNorm[2] * bcNorm[2];

    return acos(res)*180.0/ 3.141592653589793;
}


double a[] = {1, 0, 0};

double b[] = {0, 0, 0};

double c[] = {0, 1, 0};

std::cout<< "The angle of ABC is " << GetAngleABC(a,b,c)<< "º " << std::endl;


回答3:

@Roger algorithm in swift

func SCNVector3Angle(start: SCNVector3, mid: SCNVector3, end: SCNVector3) -> Double {
    let v1 = (start - mid)
    let v2 = (end - mid)
    let v1norm = v1.normalized()
    let v2norm = v2.normalized()

    let res = v1norm.x * v2norm.x + v1norm.y * v2norm.y + v1norm.z * v2norm.z
    let angle: Double = Double(GLKMathRadiansToDegrees(acos(res)))
    return angle
}

/**
* Subtracts two SCNVector3 vectors and returns the result as a new SCNVector3.
*/
func - (left: SCNVector3, right: SCNVector3) -> SCNVector3 {
    return SCNVector3Make(left.x - right.x, left.y - right.y, left.z - right.z)
}

extension SCNVector3
{
    /**
    * Returns the length (magnitude) of the vector described by the SCNVector3
    */
    func length() -> Float {
        return sqrtf(x*x + y*y + z*z)
    }

    /**
    * Normalizes the vector described by the SCNVector3 to length 1.0 and returns
    * the result as a new SCNVector3.
    */
    func normalized() -> SCNVector3 {
        return self / length()
    }
}


回答4:

The same in python (with output in degrees):

import numpy as np
import math 
import time

def angle_2p_3d(a, b, c):       

    v1 = np.array([ a[0] - b[0], a[1] - b[1], a[2] - b[2] ])
    v2 = np.array([ c[0] - b[0], c[1] - b[1], c[2] - b[2] ])

    v1mag = np.sqrt([ v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] ])
    v1norm = np.array([ v1[0] / v1mag, v1[1] / v1mag, v1[2] / v1mag ])

    v2mag = np.sqrt(v2[0] * v2[0] + v2[1] * v2[1] + v2[2] * v2[2])
    v2norm = np.array([ v2[0] / v2mag, v2[1] / v2mag, v2[2] / v2mag ])
    res = v1norm[0] * v2norm[0] + v1norm[1] * v2norm[1] + v1norm[2] * v2norm[2]
    angle_rad = np.arccos(res)

    return math.degrees(angle_rad)


p1 = np.array([1,0,0])
p2 = np.array([0,0,0])
p3 = np.array([0,0,1])

start = time.time()
angle= angle_2p_3d(p1, p2, p3)
end = time.time()

print("angle: ", angle)
print("elapsed in: ", end - start)

Output:

angle: 90.0

elapsed in: 8.392333984375e-05



标签: 3d