Two common locking idioms are:
if (!atomic_swap(lockaddr, 1)) /* got the lock */
and:
if (!atomic_compare_and_swap(lockaddr, 0, val)) /* got the lock */
where val
could simply be a constant or an identifier for the new prospective owner of the lock.
What I'd like to know is whether there tends to be any significant performance difference between the two on x86 (and x86_64) machines. I know this is a fairly broad question since the answer might vary a lot between individual cpu models, but that's part of the reason I'm asking SO rather than just doing benchmarks on a few cpus I have access to.
I assume atomic_swap(lockaddr, 1) gets translated to a xchg reg,mem instruction and atomic_compare_and_swap(lockaddr, 0, val) gets translated to a cmpxchg[8b|16b].
Some linux kernel developers think cmpxchg ist faster, because the lock prefix isn't implied as with xchg. So if you are on a uniprocessor, multithread or can otherwise make sure the lock isn't needed, you are probably better of with cmpxchg.
But chances are your compiler will translate it to a "lock cmpxchg" and in that case it doesn't really matter.
Also note that while latencies for this instructions are low (1 cycle without lock and about 20 with lock), if you happen to use are common sync variable between two threads, which is quite usual, some additional bus cycles will be enforced, which last forever compared to the instruction latencies. These will most likely completly be hidden by a 200 or 500 cpu cycles long cache snoop/sync/mem access/bus lock/whatever.
I found this Intel document, stating that there is no difference in practice:
http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures/
One common myth is that the lock utilizing a cmpxchg instruction is cheaper than a lock utilizing an xchg instruction. This is used because cmpxchg will not attempt to get the lock in exclusive mode since the cmp will go through first. Figure 9 shows that the cmpxchg is just as expensive as the xchg instruction.
On x86, any instruction with a LOCK prefix does all memory operations as read-modify-write cycles. This means that XCHG (with its implicit LOCK) and LOCK CMPXCHG (in all cases, even if the comparison fails) always get an exclusive lock on the cache line. The result is that there is basically no difference in performance.
Note that many CPUs all spinning on the same lock can cause a lot of bus overhead in this model. This is one reason that spin-lock loops should contain PAUSE instructions. Some other architectures have better operations for this.
Are you sure you didn't mean
if (!atomic_load(lockaddr)) {
if (!atomic_swap(lockaddr, val)) /* got the lock */
for the second one?
Test and test and set locks (see Wikipedia https://en.wikipedia.org/wiki/Test_and_test-and-set ) are a quite common optimization for many platforms.
Depending on how compare and exchange is implemented it could be faster or slower than a test and test and set.
As x86 is a relatively stronger ordered platform HW optimizations that may make test and test and set locks faster may be less possible.
Figure 8 from the document that Bo Persson found
http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures/ shows that Test and Test and Set locks are superior in performance.
In terms of performance on Intel's processors it is the same, but for the sake of simplicity, to have things easier to fathom, I prefer the first way from the examples that you have given. There is no reason to use cmpxchg
for acquiring a lock if you can do this with xchg
.
According to the Occam's razor principle, simple things are better.
Besides that, locking with xchg
is more powerful - you can also check the correctness of the logic of your software, i.e. that you are not accessing the memory byte that has not been explicitly allocated for locking, or that you don't unlock twice.
There is no consensus on whether releasing a lock should be just a normal store or a lock
-ed store. For example, LeaveCriticalSection under Windows 10 uses lock
-ed store to release lock even on a single-socket processor; while on multiple physical processors with Non-Uniform-Memory-Access (NUMA), the issue of how to release lock: a normal store vs a lock
-ed store may be even more important.
See this example of safer locking functions that check data for validity, and catches attempts to release locks that were not aquired:
const
cLockAvailable = 107; // arbitrary constant, use any unique values that you like, I've chosen prime numbers
cLockLocked = 109;
cLockFinished = 113;
function AcquireLock(var Target: LONG): Boolean;
var
R: LONG;
begin
R := InterlockedExchange(Target, cLockByteLocked);
case R of
cLockAvailable: Result := True; // we've got a value that indicates that the lock was available, so return True to the caller indicating that we have acquired the lock
cLockByteLocked: Result := False; // we've got a value that indicates that the lock was already acquire by someone else, so return False to the caller indicating that we have failed to acquire the lock this time
else
begin
raise Exception.Create('Serious application error - tried to acquire lock using a variable that has not been properly initialized');
end;
end;
end;
procedure ReleaseLock(var Target: LONG);
var
R: LONG;
begin
// As Peter Cordes pointed out (see comments below), releasing the lock doesn't have to be interlocked, just a normal store. Even for debugging we use normal load. However, Windows 10 uses locked release on LeaveCriticalSection.
R := Target;
Target := cLockAvailable;
if R <> cLockByteLocked then
begin
raise Exception.Create('Serious application error - tried to release a lock that has not been actually locked');
end;
end;
Your main application goes here:
var
AreaLocked: LONG;
begin
AreaLocked := cLockAvailable; // on program initialization, fill the default value
....
if AcquireLock(AreaLocked) then
try
// do something critical with the locked area
...
finally
ReleaseLock(AreaLocked);
end;
....
AreaLocked := cLockFinished; // on program termination, set the special value to catch probable cases when somebody will try to acquire the lock
end.
You may also use the following code as a spin-loop, it uses normal load while spinning to save resources, as suggested by Peter Cordes. After 5000 cycles it calls Windows API function SwitchToThread(). This value of 5000 cycles is my empirical. Values from 500 to 50000 also seem to be OK, in some scenarios lower values are better while in others higher are better. Please note that you may use this code only on processors that support SSE2 - you should check the corresponding CPUID bit before calling pause
instruction - otherwise there will just be a waste of power. On processors without pause
just use other means, like EnterCriticalSection/LeaveCriticalSection or Sleep(0) and then Sleep(1) in a loop. Some people say that on 64-bit processors you may not check for SSE2 to make sure that the pause
instruction is implemented, because the original AMD64 architecture adopted Intel's SSE and SSE2 as core instructions, and, practically, if you run 64-bit code, you have already have SSE2 for sure and thus the pause
instruction. However, Intel discourages a practice of relying on a presence specific feature and explicitly states that certain feature may vanish in future processors and applications must always check features via CPUID. However, the SSE instructions became ubiquitous and many 64-bit compilers use them without checking (e.g. Delphi for Win64), so chances that in some future processors there will be no SSE2, let alone pause
, are very slim.
// on entry rcx = address of the byte-lock
// on exit: al (eax) = old value of the byte at [rcx]
@Init:
mov edx, cLockByteLocked
mov r9d, 5000
mov eax, edx
jmp @FirstCompare
@DidntLock:
@NormalLoadLoop:
dec r9
jz @SwitchToThread // for static branch prediction, jump forward means "unlikely"
pause
@FirstCompare:
cmp [rcx], al // we are using faster, normal load to not consume the resources and only after it is ready, do once again interlocked exchange
je @NormalLoadLoop // for static branch prediction, jump backwards means "likely"
lock xchg [rcx], al
cmp eax, edx // 32-bit comparison is faster on newer processors like Xeon Phi or Cannonlake.
je @DidntLock
jmp @Finish
@SwitchToThread:
push rcx
call SwitchToThreadIfSupported
pop rcx
jmp @Init
@Finish: