I'm using (keras-self-attention) to implement attention LSTM in KERAS. How can I visualize the attention part after training the model? This is a time series forecasting case.
from keras.models import Sequential
from keras_self_attention import SeqWeightedAttention
from keras.layers import LSTM, Dense, Flatten
model = Sequential()
model.add(LSTM(activation = 'tanh' ,units = 200, return_sequences = True,
input_shape = (TrainD[0].shape[1], TrainD[0].shape[2])))
model.add(SeqSelfAttention())
model.add(Flatten())
model.add(Dense(1, activation = 'relu'))
model.compile(optimizer = 'adam', loss = 'mse')
One approach is to fetch the outputs of SeqSelfAttention
for a given input, and organize them so to display predictions per-channel (see below). For something more advanced, have a look at the iNNvestigate library (usage examples included).
Explanation:
show_features_1D
fetches
layer_name
(can be a substring) layer outputs and shows predictions per-channel (labeled), with timesteps along x-axis and output values along y-axis.
input_data
= single batch of data of shape (1, input_shape)
prefetched_outputs
= already-acquired layer outputs; overrides input_data
max_timesteps
= max # of timesteps to show
max_col_subplots
= max # of subplots along horizontal
equate_axes
= force all x- and y- axes to be equal (recommended for fair comparison)
show_y_zero
= whether to show y=0 as a red line
channel_axis
= layer features dimension (e.g. units
for LSTM, which is last)
scale_width, scale_height
= scale displayed image width & height
dpi
= image quality (dots per inches)
Visuals (below) explanation:
- First is useful to see the shapes of extracted features, regardless of magnitude - giving information about e.g. frequency contents
- Second is useful to see feature relationships - e.g. relative magnitudes, biases, and frequencies. Below result stands in stark contrast with image above it, as, running
print(outs_1)
reveals that all magnitudes are very small and don't vary much, so including the y=0 point and equating axes yields a line-like visual, which can be interpreted as self-attention being bias-oriented.
- Third is useful for visualizing features too many to be visualized as above; defining model with
batch_shape
instead of input_shape
removes all ?
in printed shapes, and we can see that first output's shape is (10, 60, 240)
, second's (10, 240, 240)
. In other words, the first output returns LSTM channel attention, and the second a "timesteps attention". The heatmap result below can be interpreted as showing attention "cooling down" w.r.t. timesteps.
SeqWeightedAttention is a lot easier to visualize, but there isn't much to visualize; you'll need to rid of Flatten
above to make it work. The attention's output shapes then become (10, 60)
and (10, 240)
- for which you can use a simple histogram, plt.hist
(just make sure you exclude the batch dimension - i.e. feed (60,)
or (240,)
).
from keras.layers import Input, Dense, LSTM, Flatten, concatenate
from keras.models import Model
from keras.optimizers import Adam
from keras_self_attention = SeqSelfAttention
import numpy as np
ipt = Input(shape=(240,4))
x = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x = SeqSelfAttention(return_attention=True)(x)
x = concatenate(x)
x = Flatten()(x)
out = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')
X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)
outs = get_layer_outputs(model, 'seq', X[0:1], 1)
outs_1 = outs[0]
outs_2 = outs[1]
show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=False,show_y_zero=False)
show_features_1D(model,'lstm',X[0:1],max_timesteps=100,equate_axes=True, show_y_zero=True)
show_features_2D(outs_2[0]) # [0] for 2D since 'outs_2' is 3D
def show_features_1D(model=None, layer_name=None, input_data=None,
prefetched_outputs=None, max_timesteps=100,
max_col_subplots=10, equate_axes=False,
show_y_zero=True, channel_axis=-1,
scale_width=1, scale_height=1, dpi=76):
if prefetched_outputs is None:
layer_outputs = get_layer_outputs(model, layer_name, input_data, 1)[0]
else:
layer_outputs = prefetched_outputs
n_features = layer_outputs.shape[channel_axis]
for _int in range(1, max_col_subplots+1):
if (n_features/_int).is_integer():
n_cols = int(n_features/_int)
n_rows = int(n_features/n_cols)
fig, axes = plt.subplots(n_rows,n_cols,sharey=equate_axes,dpi=dpi)
fig.set_size_inches(24*scale_width,16*scale_height)
subplot_idx = 0
for row_idx in range(axes.shape[0]):
for col_idx in range(axes.shape[1]):
subplot_idx += 1
feature_output = layer_outputs[:,subplot_idx-1]
feature_output = feature_output[:max_timesteps]
ax = axes[row_idx,col_idx]
if show_y_zero:
ax.axhline(0,color='red')
ax.plot(feature_output)
ax.axis(xmin=0,xmax=len(feature_output))
ax.axis('off')
ax.annotate(str(subplot_idx),xy=(0,.99),xycoords='axes fraction',
weight='bold',fontsize=14,color='g')
if equate_axes:
y_new = []
for row_axis in axes:
y_new += [np.max(np.abs([col_axis.get_ylim() for
col_axis in row_axis]))]
y_new = np.max(y_new)
for row_axis in axes:
[col_axis.set_ylim(-y_new,y_new) for col_axis in row_axis]
plt.show()
def show_features_2D(data, cmap='bwr', norm=None,
scale_width=1, scale_height=1):
if norm is not None:
vmin, vmax = norm
else:
vmin, vmax = None, None # scale automatically per min-max of 'data'
plt.imshow(data, cmap=cmap, vmin=vmin, vmax=vmax)
plt.xlabel('Timesteps', weight='bold', fontsize=14)
plt.ylabel('Attention features', weight='bold', fontsize=14)
plt.colorbar(fraction=0.046, pad=0.04) # works for any size plot
plt.gcf().set_size_inches(8*scale_width, 8*scale_height)
plt.show()
def get_layer_outputs(model, layer_name, input_data, learning_phase=1):
outputs = [layer.output for layer in model.layers if layer_name in layer.name]
layers_fn = K.function([model.input, K.learning_phase()], outputs)
return layers_fn([input_data, learning_phase])
SeqWeightedAttention example per request:
ipt = Input(batch_shape=(10,240,4))
x = LSTM(60, activation='tanh', return_sequences=True)(ipt)
x = SeqWeightedAttention(return_attention=True)(x)
x = concatenate(x)
out = Dense(1, activation='sigmoid')(x)
model = Model(ipt,out)
model.compile(Adam(lr=1e-2), loss='binary_crossentropy')
X = np.random.rand(10,240,4) # dummy data
Y = np.random.randint(0,2,(10,1)) # dummy labels
model.train_on_batch(X, Y)
outs = get_layer_outputs(model, 'seq', X, 1)
outs_1 = outs[0][0] # additional index since using batch_shape
outs_2 = outs[1][0]
plt.hist(outs_1, bins=500); plt.show()
plt.hist(outs_2, bins=500); plt.show()