The following program has worked for converting an EBCDIC value to an integer, when receiving data from one of our customers. The data we get may be a subset of what you might get, so see if this works for you:
using System;
using System.Text;
namespace ConsoleApplication6
{
class Program
{
static void Main(string[] args)
{
string strAmount = "00007570{";
Console.WriteLine("{0} is {1}", strAmount, ConvertEBCDICtoInt(strAmount));
strAmount = "000033}";
Console.WriteLine("{0} is {1}", strAmount, ConvertEBCDICtoInt(strAmount));
Console.ReadLine();
}
// This converts "00007570{" into "75700", and "000033}" into "-330"
public static int? ConvertEBCDICtoInt(string i_strAmount)
{
int? nAmount = null;
if (string.IsNullOrEmpty(i_strAmount))
return(nAmount);
StringBuilder strAmount = new StringBuilder(i_strAmount);
if (i_strAmount.IndexOfAny(new char[] { '}', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R' }) >= 0)
strAmount.Insert(0, "-");
strAmount.Replace("{", "0");
strAmount.Replace("}", "0");
strAmount.Replace("A", "1");
strAmount.Replace("J", "1");
strAmount.Replace("B", "2");
strAmount.Replace("K", "2");
strAmount.Replace("C", "3");
strAmount.Replace("L", "3");
strAmount.Replace("D", "4");
strAmount.Replace("M", "4");
strAmount.Replace("E", "5");
strAmount.Replace("N", "5");
strAmount.Replace("F", "6");
strAmount.Replace("O", "6");
strAmount.Replace("G", "7");
strAmount.Replace("P", "7");
strAmount.Replace("H", "8");
strAmount.Replace("Q", "8");
strAmount.Replace("I", "9");
strAmount.Replace("R", "9");
// Convert the amount to a int:
int n;
if (int.TryParse(strAmount.ToString(), out n))
nAmount = n;
return (nAmount);
}
}
}
You're going to want to read up on binary-coded decimals, as that is what you are facing, and there are questions to answer before you can really code it.
If the value is a single character, it may be as simple as getting the char number--but you need to know if the system is Big Endian (like most mainframes from which you would be getting EBDIC-encoded files) or Little Endian (like more modern OSes).
If your integer value uses more than one character and includes the sign (as you mention), then it is more complex. Most likely, each half (or "nibble", or 4 bits) of each character represents the number--maybe 0 thru 9 or in hex 0 thru F, and the string is padded with zeros (nulls, actually) on the left, and the last nibble contains the sign. This system might be called Zoned Decimal in some parlance.
All in all, I would recommend starting by reading this article, which should introduce you to how data is/was stored on COBOL-based mainframes, and get you moving the right direction.
In C#, you may be able to do the conversion form the common Zoned Decimal (which sounds like the best fit for your incoming data as you have described it) by using int.Parse with the correct NumberStyles options, like this:
int val = int.Parse(num, NumberStyles.AllowLeadingWhite | NumberStyles.AllowTrailingWhite);
This question is quite old, but we recently ran into the same issue. It seems that some large financial institutions (I'm looking at you Fidelity) still use old-school mainframe systems that you need to communicate with and these systems expect zoned-decimal.
The problem that I have found with other answers is that they use string manipulation operations, which are slow. I put together a simple C# library that does the conversion numerically and dropped it on GitHub. Check the link below for an in-depth description of the issue. I have included the (current as of now) implementation of the ZonedDecimalConverter class.
zoned-decimal on GitHub
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ZonedDecimal
{
public static class ZonedDecimalConverter
{
public enum RoundingOperation { AwayFromZero, ToEven, Truncate };
const byte MASK_UNSIGNED = 0xF0;
const byte MASK_POSITIVE = 0xC0;
const byte MASK_NEGATIVE = 0xD0;
// this is a subset of the IBM code page 37 EBCDIC character set. we are only concerned with the characters that correspond to numbers.
// for this dictionary, you key in with the code and get the character
static readonly Dictionary<byte, char> m_IBM037Characters = new Dictionary<byte, char>()
{
{0xC0, '{'},{0xC1, 'A'},{0xC2, 'B'},{0xC3, 'C'},{0xC4, 'D'},{0xC5, 'E'},{0xC6, 'F'},{0xC7, 'G'},{0xC8, 'H'},{0xC9, 'I'}
,{0xD0, '}'},{0xD1, 'J'},{0xD2, 'K'},{0xD3, 'L'},{0xD4, 'M'},{0xD5, 'N'},{0xD6, 'O'},{0xD7, 'P'},{0xD8, 'Q'},{0xD9, 'R'}
,{0xF0, '0'},{0xF1, '1'},{0xF2, '2'},{0xF3, '3'},{0xF4, '4'},{0xF5, '5'},{0xF6, '6'},{0xF7, '7'},{0xF8, '8'},{0xF9, '9'}
};
// this is the inverse of the dictionary above. you key in with the character and get the code
static readonly Dictionary<char, byte> m_IBM037Codes = m_IBM037Characters.ToDictionary((pair) => pair.Value, (pair) => pair.Key);
/// <summary>
/// Returns a string that represents the zone-decimal version of the value specified
/// </summary>
/// <param name="value">The value</param>
/// <param name="digitsLeft">How many fixed digits should be to the left of the decimal place</param>
/// <param name="digitsRight">How many fixed digits should be to the right of the decimal place</param>
/// <param name="roundingOperation">Indicates how to handle decimal digits beyond those specified by digitsRight</param>
/// <returns></returns>
public static string GetZonedDecimal(decimal value, int digitsLeft, int digitsRight, RoundingOperation roundingOperation)
{
// bounds checking
if (digitsLeft < 1) throw new ArgumentException("Value must be greater than zero.", "digitsLeft");
if (digitsRight < 0) throw new ArgumentException("Value must be greater than or equal to zero.", "digitsRight");
// zoned-decimal has its own way of signaling negative
bool isNegative = false;
if (value < 0)
{
isNegative = true;
value = -value; // same result as Math.Abs
}
// apply any rounding operation
if (roundingOperation != RoundingOperation.Truncate)
value = Math.Round(value, digitsRight, roundingOperation == RoundingOperation.AwayFromZero ? MidpointRounding.AwayFromZero : MidpointRounding.ToEven);
/* calculating with decimal is extremely slow comapred to int. we'll multiple the number by digitsRight to put all significant
* digits into whole number places and then load it into an unsigned long. since ulong.MaxValue is 18446744073709551615,
* this gives us 20 digits total to work with. assuming you used 4 digits to the right, you could have up to 16 to the left, etc.
* we do not use uint here since uint.MaxValue is 4294967295 and that would only give us 10 digits to work with. many fields
* that i have seen have a COBOL signature of S9(11)V99, which is 13 digits total. also, we use unsigned because the sign bit
* is not used (zoned-decimal has it own way of signaling negative) and long.MaxValue (vs ulong.MaxValue) is one digit shorter.
* if the value is too big to be represented as a ulong with an implied decimal place (not likely) then you're out of luck and
* you'll get an exception here
*/
ulong workingValue = (ulong)(value * (int)Math.Pow(10, digitsRight));
// the total number of digits that will be output
int length = digitsLeft + digitsRight;
// more bounds checking (e.g. digitsLeft = 3; digitsRight = 2; if number with implied decimal place > 10^5-1=99999 then it will not fit)
if (workingValue > Math.Pow(10, length) - 1)
throw new ArgumentException("Value exceeds specified total number of fixed digits.", "value");
// each character will be a digit of the number
char[] output = new char[length];
// loop through the number and output each digit as zoned-decimal
for (int i = 0; i < length; i++)
{
byte digit = 0;
// if we run out of digits then we'll just keep looping, padding the specified fixed number
// of decimal places with zeros
if (workingValue > 0)
{
// current digit is the one that occupies the right-most place
digit = (byte)(workingValue % 10);
// shift all values to the right, dropping the current right-most value in the process
workingValue /= 10;
}
// the sign indicator is included in the initial right-most digit only
if (i == 0)
digit |= isNegative ? MASK_NEGATIVE : MASK_POSITIVE;
else
digit |= MASK_UNSIGNED;
// set values of our character array from right to left based on the IBM code page 37 EBCDIC character set
output[length - i - 1] = m_IBM037Characters[digit];
}
return new string(output);
}
/// <summary>
/// Returns a decimal from a zoned-decimal
/// </summary>
/// <param name="zonedDecimalString">The zoned-decimal string</param>
/// <param name="digitsRight">Number of digits that should be to the right of the decimal place</param>
/// <returns></returns>
public static decimal GetDecimal(string zonedDecimalString, int digitsRight)
{
// we'll do most calculations with ulong since it's significantly faster then calculating with decimal
ulong value = 0;
// we'll need a way to determine if the number is negative. this will be signaled in the zone of the right-most character
bool isNegative = false;
// this will be used to create the place value of each digit
ulong multipler = 1;
// start at the right-hand side of the number and proceed to the left
int lastIndex = zonedDecimalString.Length - 1;
for (int i = lastIndex; i >= 0; i--)
{
// get the EBCDIC code for the character at position i
if (!m_IBM037Codes.TryGetValue(zonedDecimalString[i], out byte digit))
throw new ArgumentException("Invalid numeric character found in zoned-decimal string", "zonedDecimalString");
// the right-most character will carry the sign
if (i == lastIndex)
isNegative = (digit & 0xF0) == MASK_NEGATIVE;
// strip out the zone
digit &= 0x0F;
// add the place value of the digit to our return value
value += digit * multipler;
// multipler goes to the next "place" (tens/hundreds/thousands/etc)
multipler *= 10;
}
// now we're going to deal with decimal places and negatives, so we have to switch to a decimal
decimal returnValue = value;
// deal with digits to the right of the decimal
if (digitsRight > 0)
returnValue /= (int)Math.Pow(10, digitsRight);
// deal with negative
if (isNegative)
returnValue = -returnValue;
return returnValue;
}
}
}
Try following function..
public string ConvertEBCDICtoASCII(string strEBCDICString) {
int[] e2a = new int[256]{
0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
16, 17, 18, 19,157,133, 8,135, 24, 25,146,143, 28, 29, 30, 31,
128,129,130,131,132, 10, 23, 27,136,137,138,139,140, 5, 6, 7,
144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
32,160,161,162,163,164,165,166,167,168, 91, 46, 60, 40, 43, 33,
38,169,170,171,172,173,174,175,176,177, 93, 36, 42, 41, 59, 94,
45, 47,178,179,180,181,182,183,184,185,124, 44, 37, 95, 62, 63,
186,187,188,189,190,191,192,193,194, 96, 58, 35, 64, 39, 61, 34,
195, 97, 98, 99,100,101,102,103,104,105,196,197,198,199,200,201,
202,106,107,108,109,110,111,112,113,114,203,204,205,206,207,208,
209,126,115,116,117,118,119,120,121,122,210,211,212,213,214,215,
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,
123, 65, 66, 67, 68, 69, 70, 71, 72, 73,232,233,234,235,236,237,
125, 74, 75, 76, 77, 78, 79, 80, 81, 82,238,239,240,241,242,243,
92,159, 83, 84, 85, 86, 87, 88, 89, 90,244,245,246,247,248,249,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,250,251,252,253,254,255};
char chrItem = Convert.ToChar("0");
StringBuilder sb = new StringBuilder();
for (int i = 0; i < strEBCDICString.Length; i++) {
try {
chrItem = Convert.ToChar(strEBCDICString.Substring(i, 1));
sb.Append(Convert.ToChar(e2a[(int)chrItem]));
} catch (Exception ex) {
Console.WriteLine(ex.Message);
return string.Empty;
}
}
string result = sb.ToString();
sb = null;
return result;
}