可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Given the dataframe df
:
x <- c("X1", "X2", "X3", "X4", "X5")
y <- c("00L0", "0", "00012L", "0123L0", "0D0")
df <- data.frame(x, y)
How can I leverage tidyr::separate
to put each character of the y
strings into a separate column (one column per string position)?
Desired output:
x <- c("X1", "X2", "X3", "X4", "X5")
m1 <- c(0, 0, 0, 0, 0)
m2 <- c(0, NA, 0, 1, "D")
m3 <- c("L", NA, 0, 2, 0)
mN <- c(NA, NA, NA, NA, NA)
df <- data.frame(x, m1, m2, m3, mN)
Where mN could theoretically go up to m100 (100 columns), or higher.
回答1:
This works. It fills with blanks rather than NA
s, but you can change that post-hoc if you prefer. (fill = 'right'
only works when splitting on a character vector, not explicit positions.)
maxchar = max(nchar(as.character(df$y)))
tidyr::separate(df, y, into = paste0("y", 1:maxchar), sep = 1:(maxchar - 1))
# x y1 y2 y3 y4 y5 y6
# 1 X1 0 0 L 0
# 2 X2 0
# 3 X3 0 0 0 1 2 L
# 4 X4 0 1 2 3 L 0
# 5 X5 0 D 0
回答2:
Here is a base R method.
# split the strings
temp <- strsplit(df$y, split="")
# maximum length of the list items
maxL <- max(sapply(temp, length))
# contstruct data.frame with NAs as fills
temp <- data.frame(do.call(rbind, lapply(temp, function(i) c(i, rep(NA, maxL-length(i))))))
# add to df
df <- cbind(x=df[, -2], temp)
which results in
x X1 X2 X3 X4 X5 X6
1 X1 0 0 L 0 <NA> <NA>
2 X2 0 <NA> <NA> <NA> <NA> <NA>
3 X3 0 0 0 1 2 L
4 X4 0 1 2 3 L 0
5 X5 0 D 0 <NA> <NA> <NA>
I used stringsAFactors=FALSE in the creation of the df:
df <- data.frame(x, y, stringsAsFactors = F)
But, if I didn't, this code would result in an error as @m0h3n points out. The without this alternative data.frame construction, it is necessary to wrap df$y in as.character
to coerce the variable from a factor to a character:
# split the strings
temp <- strsplit(as.character(df$y), split="")
Thanks @m0h3n for pointing this out.
回答3:
You can split the string in column y into individual characters using strsplit:
> strsplit("00L0",c())
[[1]]
[1] "0" "0" "L" "0"
Starting with your data frame:
> df
x y
1 X1 00L0
2 X2 0
3 X3 00012L
4 X4 0123L0
5 X5 0D0
I solved the problem of putting these characters into columns by:
First: Use ddply to split all the strings in column y and put these in separate rows
> ddply(df, .(x), summarise, v = 1:nchar(as.character(y)),
y = unlist(strsplit(as.character(y),c())))
x v y
1 X1 1 0
2 X1 2 0
3 X1 3 L
4 X1 4 0
5 X2 1 0
6 X3 1 0
7 X3 2 0
8 X3 3 0
9 X3 4 1
10 X3 5 2
11 X3 6 L
12 X4 1 0
13 X4 2 1
14 X4 3 2
15 X4 4 3
16 X4 5 L
17 X4 6 0
18 X5 1 0
19 X5 2 D
20 X5 3 0
Second: Use reshape to convert the rows with same x-value into columns
> reshape(ans, idvar=c("x"), timevar="v", direction="wide")
x y.1 y.2 y.3 y.4 y.5 y.6
1 X1 0 0 L 0 <NA> <NA>
5 X2 0 <NA> <NA> <NA> <NA> <NA>
6 X3 0 0 0 1 2 L
12 X4 0 1 2 3 L 0
18 X5 0 D 0 <NA> <NA> <NA>
This may be over-complicating the problem, but it is the only way I could get it to work!
回答4:
Here is another base R
option where we create a delimiter ,
between each character of the 'y' column using gsub
and then read it with read.csv
cbind(df[1],read.csv(text=gsub("(?<=.)(?=.)", ",", df$y, perl=TRUE),
header=FALSE,fill=TRUE, na.strings = ""))
# x V1 V2 V3 V4 V5 V6
#1 X1 0 0 L 0 <NA> <NA>
#2 X2 0 <NA> <NA> NA <NA> <NA>
#3 X3 0 0 0 1 2 L
#4 X4 0 1 2 3 L 0
#5 X5 0 D 0 NA <NA> <NA>
Or use tstrsplit
from data.table
mxr = max(nchar(as.character(df$y)))
setDT(df)[, paste0("y", seq(mxr)) := tstrsplit(y, "")]