So here's what I want to do: I have a list that contains several equivalence relations:
l = [[1, 2], [2, 3], [4, 5], [6, 7], [1, 7]]
And I want to union the sets that share one element. Here is a sample implementation:
def union(lis):
lis = [set(e) for e in lis]
res = []
while True:
for i in range(len(lis)):
a = lis[i]
if res == []:
res.append(a)
else:
pointer = 0
while pointer < len(res):
if a & res[pointer] != set([]) :
res[pointer] = res[pointer].union(a)
break
pointer +=1
if pointer == len(res):
res.append(a)
if res == lis:
break
lis,res = res,[]
return res
And it prints
[set([1, 2, 3, 6, 7]), set([4, 5])]
This does the right thing but is way too slow when the equivalence relations is too large. I looked up the descriptions on union-find algorithm: http://en.wikipedia.org/wiki/Disjoint-set_data_structure
but I still having problem coding a Python implementation.
Solution that runs in O(n)
time
def indices_dict(lis):
d = defaultdict(list)
for i,(a,b) in enumerate(lis):
d[a].append(i)
d[b].append(i)
return d
def disjoint_indices(lis):
d = indices_dict(lis)
sets = []
while len(d):
que = set(d.popitem()[1])
ind = set()
while len(que):
ind |= que
que = set([y for i in que
for x in lis[i]
for y in d.pop(x, [])]) - ind
sets += [ind]
return sets
def disjoint_sets(lis):
return [set([x for i in s for x in lis[i]]) for s in disjoint_indices(lis)]
How it works:
>>> lis = [(1,2),(2,3),(4,5),(6,7),(1,7)]
>>> indices_dict(lis)
>>> {1: [0, 4], 2: [0, 1], 3: [1], 4: [2], 5: [2], 6: [3], 7: [3, 4]})
indices_dict
gives a map from an equivalence # to an index in lis
. E.g. 1
is mapped to index 0
and 4
in lis
.
>>> disjoint_indices(lis)
>>> [set([0,1,3,4], set([2])]
disjoint_indices
gives a list of disjoint sets of indices. Each set corresponds to indices in an equivalence. E.g. lis[0]
and lis[3]
are in the same equivalence but not lis[2]
.
>>> disjoint_set(lis)
>>> [set([1, 2, 3, 6, 7]), set([4, 5])]
disjoint_set
converts disjoint indices into into their proper equivalences.
Time complexity
The O(n)
time complexity is difficult to see but I'll try to explain. Here I will use n = len(lis)
.
indices_dict
certainly runs in O(n)
time because only 1 for-loop
disjoint_indices
is the hardest to see. It certainly runs in O(len(d))
time since the outer loop stops when d
is empty and the inner loop removes an element of d
each iteration. now, the len(d) <= 2n
since d
is a map from equivalence #'s to indices and there are at most 2n
different equivalence #'s in lis
. Therefore, the function runs in O(n)
.
disjoint_sets
is difficult to see because of the 3 combined for-loops. However, you'll notice that at most i
can run over all n
indices in lis
and x
runs over the 2-tuple, so the total complexity is 2n = O(n)
I think this is an elegant solution, using the built in set functions:
#!/usr/bin/python3
def union_find(lis):
lis = map(set, lis)
unions = []
for item in lis:
temp = []
for s in unions:
if not s.isdisjoint(item):
item = s.union(item)
else:
temp.append(s)
temp.append(item)
unions = temp
return unions
if __name__ == '__main__':
l = [[1, 2], [2, 3], [4, 5], [6, 7], [1, 7]]
print(union_find(l))
It returns a list of sets.
Perhaps something like this?
#!/usr/local/cpython-3.3/bin/python
import copy
import pprint
import collections
def union(list_):
dict_ = collections.defaultdict(set)
for sublist in list_:
dict_[sublist[0]].add(sublist[1])
dict_[sublist[1]].add(sublist[0])
change_made = True
while change_made:
change_made = False
for key, values in dict_.items():
for value in copy.copy(values):
for element in dict_[value]:
if element not in dict_[key]:
dict_[key].add(element)
change_made = True
return dict_
list_ = [ [1, 2], [2, 3], [4, 5], [6, 7], [1, 7] ]
pprint.pprint(union(list_))
This works by completely exhausting one equivalence at a time. When an element finds it's equivalence it is removed from the original set and no longer searched.
def equiv_sets(lis):
s = set(lis)
sets = []
#loop while there are still items in original set
while len(s):
s1 = set(s.pop())
length = 0
#loop while there are still equivalences to s1
while( len(s1) != length):
length = len(s1)
for v in list(s):
if v[0] in s1 or v[1] in s1:
s1 |= set(v)
s -= set([v])
sets += [s1]
return sets
print equiv_sets([(1,2),(2,3),(4,5),(6,7),(1,7)])
OUTPUT: [set([1, 2, 3, 6, 7]), set([4, 5])]