This is trivial implement of course, but I feel there is certainly something built in to Racket that does this. Am I correct in that intuition, and if so, what is function?
问题:
回答1:
Strangely, there isn't a built-in procedure in Racket for finding the 0-based index of an element in a list (the opposite procedure does exist, it's called list-ref
). However, it's not hard to implement efficiently:
(define (index-of lst ele)
(let loop ((lst lst)
(idx 0))
(cond ((empty? lst) #f)
((equal? (first lst) ele) idx)
(else (loop (rest lst) (add1 idx))))))
But there is a similar procedure in srfi/1
, it's called list-index
and you can get the desired effect by passing the right parameters:
(require srfi/1)
(list-index (curry equal? 3) '(1 2 3 4 5))
=> 2
(list-index (curry equal? 6) '(1 2 3 4 5))
=> #f
UPDATE
As of Racket 6.7, index-of
is now part of the standard library. Enjoy!
回答2:
Here's a very simple implementation:
(define (index-of l x)
(for/or ([y l] [i (in-naturals)] #:when (equal? x y)) i))
And yes, something like this should be added to the standard library, but it's just a little tricky to do so nobody got there yet.
Note, however, that it's a feature that is very rarely useful -- since lists are usually taken as a sequence that is deconstructed using only the first/rest idiom rather than directly accessing elements. More than that, if you have a use for it and you're a newbie, then my first guess will be that you're misusing lists. Given that, the addition of such a function is likely to trip such newbies by making it more accessible. (But it will still be added, eventually.)
回答3:
One can also use a built-in function 'member
' which gives a sublist starting with the required item or #f
if item does not exist in the list. Following compares the lengths of original list and the sublist returned by member:
(define (indexof n l)
(define sl (member n l))
(if sl
(- (length l)
(length sl))
#f))
For many situations, one may want indexes of all occurrences of item in the list. One can get a list of all indexes as follows:
(define (indexes_of1 x l)
(let loop ((l l)
(ol '())
(idx 0))
(cond
[(empty? l) (reverse ol)]
[(equal? (first l) x)
(loop (rest l)
(cons idx ol)
(add1 idx))]
[else
(loop (rest l)
ol
(add1 idx))])))
For/list
can also be used for this:
(define (indexes_of2 x l)
(for/list ((i l)
(n (in-naturals))
#:when (equal? i x))
n))
Testing:
(indexes_of1 'a '(a b c a d e a f g))
(indexes_of2 'a '(a b c a d e a f g))
Output:
'(0 3 6)
'(0 3 6)