How do you find a roman numeral equivalent of an integer. Is there a java library which provides this capability?
I did find a similar question, but I would prefer an out of the box API abstraction for this issue. Its just painful to handle all possible combinations in your code.
Here is a link for many languages including Java. Here's an extract of relevance:
public class RN {
enum Numeral {
I(1), IV(4), V(5), IX(9), X(10), XL(40), L(50), XC(90), C(100), CD(400), D(500), CM(900), M(1000);
int weight;
Numeral(int weight) {
this.weight = weight;
}
};
public static String roman(long n) {
if( n <= 0) {
throw new IllegalArgumentException();
}
StringBuilder buf = new StringBuilder();
final Numeral[] values = Numeral.values();
for (int i = values.length - 1; i >= 0; i--) {
while (n >= values[i].weight) {
buf.append(values[i]);
n -= values[i].weight;
}
}
return buf.toString();
}
public static void test(long n) {
System.out.println(n + " = " + roman(n));
}
public static void main(String[] args) {
test(1999);
test(25);
test(944);
test(0);
}
}
This is the code I am using, right next to the excel column name converter. Why isnt there an apache library for this stuff?
private static final char[] R = {'ↂ', 'ↁ', 'M', 'D', 'C', 'L', 'X', 'V', 'I'};
// or, as suggested by Andrei Fierbinteanu
// private static final String[] R = {"X\u0305", "V\u0305", "M", "D", "C", "L", "X", "V", "I"};
private static final int MAX = 10000; // value of R[0], must be a power of 10
private static final int[][] DIGITS = {
{},{0},{0,0},{0,0,0},{0,1},{1},
{1,0},{1,0,0},{1,0,0,0},{0,2}};
public static String int2roman(int number) {
if (number < 0 || number >= MAX*4) throw new IllegalArgumentException(
"int2roman: " + number + " is not between 0 and " + (MAX*4-1));
if (number == 0) return "N";
StringBuilder sb = new StringBuilder();
int i = 0, m = MAX;
while (number > 0) {
int[] d = DIGITS[number / m];
for (int n: d) sb.append(R[i-n]);
number %= m;
m /= 10;
i += 2;
}
return sb.toString();
}
Edit:
Now that I look at it again, the loop can be condensed to
for (int i = 0, m = MAX; m > 0; m /= 10, i += 2) {
int[] d = DIGITS[(number/m)%10];
for (int n: d) sb.append(R[i-n]);
}
making the code even less readable ;-)
This my answer:
Use this libreries...
import java.util.LinkedHashMap;
import java.util.Map;
The code
public static String RomanNumerals(int Int) {
LinkedHashMap<String, Integer> roman_numerals = new LinkedHashMap<String, Integer>();
roman_numerals.put("M", 1000);
roman_numerals.put("CM", 900);
roman_numerals.put("D", 500);
roman_numerals.put("CD", 400);
roman_numerals.put("C", 100);
roman_numerals.put("XC", 90);
roman_numerals.put("L", 50);
roman_numerals.put("XL", 40);
roman_numerals.put("X", 10);
roman_numerals.put("IX", 9);
roman_numerals.put("V", 5);
roman_numerals.put("IV", 4);
roman_numerals.put("I", 1);
String res = "";
for(Map.Entry<String, Integer> entry : roman_numerals.entrySet()){
int matches = Int/entry.getValue();
res += repeat(entry.getKey(), matches);
Int = Int % entry.getValue();
}
return res;
}
public static String repeat(String s, int n) {
if(s == null) {
return null;
}
final StringBuilder sb = new StringBuilder();
for(int i = 0; i < n; i++) {
sb.append(s);
}
return sb.toString();
}
Testing the code
for (int i = 1;i<256;i++) {
System.out.println("i="+i+" -> "+RomanNumerals(i));
}
The output:
i=1 -> I
i=2 -> II
i=3 -> III
i=4 -> IV
i=5 -> V
i=6 -> VI
i=7 -> VII
i=8 -> VIII
i=9 -> IX
i=10 -> X
i=11 -> XI
i=12 -> XII
i=13 -> XIII
i=14 -> XIV
i=15 -> XV
i=16 -> XVI
i=17 -> XVII
i=18 -> XVIII
i=19 -> XIX
i=20 -> XX
i=21 -> XXI
i=22 -> XXII
i=23 -> XXIII
i=24 -> XXIV
i=25 -> XXV
i=26 -> XXVI
i=27 -> XXVII
i=28 -> XXVIII
i=29 -> XXIX
i=30 -> XXX
i=31 -> XXXI
i=32 -> XXXII
i=33 -> XXXIII
i=34 -> XXXIV
i=35 -> XXXV
i=36 -> XXXVI
i=37 -> XXXVII
i=38 -> XXXVIII
i=39 -> XXXIX
i=40 -> XL
i=41 -> XLI
i=42 -> XLII
i=43 -> XLIII
i=44 -> XLIV
i=45 -> XLV
i=46 -> XLVI
i=47 -> XLVII
i=48 -> XLVIII
i=49 -> XLIX
i=50 -> L
i=51 -> LI
i=52 -> LII
i=53 -> LIII
i=54 -> LIV
i=55 -> LV
i=56 -> LVI
i=57 -> LVII
i=58 -> LVIII
i=59 -> LIX
i=60 -> LX
i=61 -> LXI
i=62 -> LXII
i=63 -> LXIII
i=64 -> LXIV
i=65 -> LXV
i=66 -> LXVI
i=67 -> LXVII
i=68 -> LXVIII
i=69 -> LXIX
i=70 -> LXX
i=71 -> LXXI
i=72 -> LXXII
i=73 -> LXXIII
i=74 -> LXXIV
i=75 -> LXXV
i=76 -> LXXVI
i=77 -> LXXVII
i=78 -> LXXVIII
i=79 -> LXXIX
i=80 -> LXXX
i=81 -> LXXXI
i=82 -> LXXXII
i=83 -> LXXXIII
i=84 -> LXXXIV
i=85 -> LXXXV
i=86 -> LXXXVI
i=87 -> LXXXVII
i=88 -> LXXXVIII
i=89 -> LXXXIX
i=90 -> XC
i=91 -> XCI
i=92 -> XCII
i=93 -> XCIII
i=94 -> XCIV
i=95 -> XCV
i=96 -> XCVI
i=97 -> XCVII
i=98 -> XCVIII
i=99 -> XCIX
i=100 -> C
i=101 -> CI
i=102 -> CII
i=103 -> CIII
i=104 -> CIV
i=105 -> CV
i=106 -> CVI
i=107 -> CVII
i=108 -> CVIII
i=109 -> CIX
i=110 -> CX
i=111 -> CXI
i=112 -> CXII
i=113 -> CXIII
i=114 -> CXIV
i=115 -> CXV
i=116 -> CXVI
i=117 -> CXVII
i=118 -> CXVIII
i=119 -> CXIX
i=120 -> CXX
i=121 -> CXXI
i=122 -> CXXII
i=123 -> CXXIII
i=124 -> CXXIV
i=125 -> CXXV
i=126 -> CXXVI
i=127 -> CXXVII
i=128 -> CXXVIII
i=129 -> CXXIX
i=130 -> CXXX
i=131 -> CXXXI
i=132 -> CXXXII
i=133 -> CXXXIII
i=134 -> CXXXIV
i=135 -> CXXXV
i=136 -> CXXXVI
i=137 -> CXXXVII
i=138 -> CXXXVIII
i=139 -> CXXXIX
i=140 -> CXL
i=141 -> CXLI
i=142 -> CXLII
i=143 -> CXLIII
i=144 -> CXLIV
i=145 -> CXLV
i=146 -> CXLVI
i=147 -> CXLVII
i=148 -> CXLVIII
i=149 -> CXLIX
i=150 -> CL
i=151 -> CLI
i=152 -> CLII
i=153 -> CLIII
i=154 -> CLIV
i=155 -> CLV
i=156 -> CLVI
i=157 -> CLVII
i=158 -> CLVIII
i=159 -> CLIX
i=160 -> CLX
i=161 -> CLXI
i=162 -> CLXII
i=163 -> CLXIII
i=164 -> CLXIV
i=165 -> CLXV
i=166 -> CLXVI
i=167 -> CLXVII
i=168 -> CLXVIII
i=169 -> CLXIX
i=170 -> CLXX
i=171 -> CLXXI
i=172 -> CLXXII
i=173 -> CLXXIII
i=174 -> CLXXIV
i=175 -> CLXXV
i=176 -> CLXXVI
i=177 -> CLXXVII
i=178 -> CLXXVIII
i=179 -> CLXXIX
i=180 -> CLXXX
i=181 -> CLXXXI
i=182 -> CLXXXII
i=183 -> CLXXXIII
i=184 -> CLXXXIV
i=185 -> CLXXXV
i=186 -> CLXXXVI
i=187 -> CLXXXVII
i=188 -> CLXXXVIII
i=189 -> CLXXXIX
i=190 -> CXC
i=191 -> CXCI
i=192 -> CXCII
i=193 -> CXCIII
i=194 -> CXCIV
i=195 -> CXCV
i=196 -> CXCVI
i=197 -> CXCVII
i=198 -> CXCVIII
i=199 -> CXCIX
i=200 -> CC
i=201 -> CCI
i=202 -> CCII
i=203 -> CCIII
i=204 -> CCIV
i=205 -> CCV
i=206 -> CCVI
i=207 -> CCVII
i=208 -> CCVIII
i=209 -> CCIX
i=210 -> CCX
i=211 -> CCXI
i=212 -> CCXII
i=213 -> CCXIII
i=214 -> CCXIV
i=215 -> CCXV
i=216 -> CCXVI
i=217 -> CCXVII
i=218 -> CCXVIII
i=219 -> CCXIX
i=220 -> CCXX
i=221 -> CCXXI
i=222 -> CCXXII
i=223 -> CCXXIII
i=224 -> CCXXIV
i=225 -> CCXXV
i=226 -> CCXXVI
i=227 -> CCXXVII
i=228 -> CCXXVIII
i=229 -> CCXXIX
i=230 -> CCXXX
i=231 -> CCXXXI
i=232 -> CCXXXII
i=233 -> CCXXXIII
i=234 -> CCXXXIV
i=235 -> CCXXXV
i=236 -> CCXXXVI
i=237 -> CCXXXVII
i=238 -> CCXXXVIII
i=239 -> CCXXXIX
i=240 -> CCXL
i=241 -> CCXLI
i=242 -> CCXLII
i=243 -> CCXLIII
i=244 -> CCXLIV
i=245 -> CCXLV
i=246 -> CCXLVI
i=247 -> CCXLVII
i=248 -> CCXLVIII
i=249 -> CCXLIX
i=250 -> CCL
i=251 -> CCLI
i=252 -> CCLII
i=253 -> CCLIII
i=254 -> CCLIV
i=255 -> CCLV
Best Regards