How to wrap every method of a class? [duplicate]

2020-01-27 03:15发布

问题:

I'd like to wrap every method of a particular class in python, and I'd like to do so by editing the code of the class minimally. How should I go about this?

回答1:

An elegant way to do it is described in Michael Foord's Voidspace blog in an entry about what metaclasses are and how to use them in the section titled A Method Decorating Metaclass. Simplifying it slightly and applying it to your situation resulted in this:

from types import FunctionType
from functools import wraps

def wrapper(method):
    @wraps(method)
    def wrapped(*args, **kwrds):
    #   ... <do something to/with "method" or the result of calling it>
    return wrapped

class MetaClass(type):
    def __new__(meta, classname, bases, classDict):
        newClassDict = {}
        for attributeName, attribute in classDict.items():
            if isinstance(attribute, FunctionType):
                # replace it with a wrapped version
                attribute = wrapper(attribute)
            newClassDict[attributeName] = attribute
        return type.__new__(meta, classname, bases, newClassDict)

class MyClass(object):
    __metaclass__ = MetaClass  # wrap all the methods
    def method1(self, ...):
        # ...etc ...

In Python, function/method decorators are just function wrappers plus some syntactic sugar to make using them easy (and prettier).

Python 3 Compatibility Update

The previous code uses Python 2.x metaclass syntax which would need to be translated in order to be used in Python 3.x, however it would then no longer work in the previous version. This means it would need to use:

class MyBase(metaclass=MetaClass)
    ...

instead of:

class MyBase(object): 
    __metaclass__ = MetaClass"
    ...

If desired, it's possible to write code which is compatible both both Python 2.x and 3.x, but doing so requires using a slightly more complicated technique which dynamically creates a new base class that inherits the desired metaclass, thereby avoiding errors due to the syntax differences between the two versions of Python. This is basically what Benjamin Peterson's six module's with_metaclass() function does.

from types import FunctionType
from functools import wraps

def wrapper(method):
    @wraps(method)
    def wrapped(*args, **kwrds):
        print('{!r} executing'.format(method.__name__))
        return method(*args, **kwrds)
    return wrapped


class MetaClass(type):
    def __new__(meta, classname, bases, classDict):
        newClassDict = {}
        for attributeName, attribute in classDict.items():
            if isinstance(attribute, FunctionType):
                # replace it with a wrapped version
                attribute = wrapper(attribute)
            newClassDict[attributeName] = attribute
        return type.__new__(meta, classname, bases, newClassDict)


def with_metaclass(meta):
    """ Create an empty class with the supplied bases and metaclass. """
    return type.__new__(meta, "TempBaseClass", (object,), {})


if __name__ == '__main__':

    # Inherit metaclass from a dynamically-created base class.
    class MyClass(with_metaclass(MetaClass)):
        @staticmethod
        def a_static_method():
            pass

        @classmethod
        def a_class_method(cls):
            pass

        def a_method(self):
            pass

    instance = MyClass()
    instance.a_static_method()  # Not decorated.
    instance.a_class_method()   # Not decorated.
    instance.a_method()         # -> 'a_method' executing


回答2:

You mean programatically set a wrapper to methods of a class?? Well, this is probably a really bad practice, but here's how you may do it:

def wrap_methods( cls, wrapper ):
    for key, value in cls.__dict__.items( ):
        if hasattr( value, '__call__' ):
            setattr( cls, key, wrapper( value ) )

If you have class, for example

class Test( ):
    def fire( self ):
        return True
    def fire2( self ):
        return True

and a wrapper

def wrapper( fn ):
    def result( *args, **kwargs ):
        print 'TEST'
        return fn( *args, **kwargs )
    return result

then calling

wrap_methods( Test, wrapper )

will apply wrapper to all methods defined in class Test. Use with caution! Actually, don't use it at all!



回答3:

If extensively modifying default class behavior is the requirement, MetaClasses are the way to go. Here's an alternative approach.

If your use case is limited to just wrapping instance methods of a class, you could try overriding the __getattribute__ magic method.

from functools import wraps
def wrapper(func):
    @wraps(func)
    def wrapped(*args, **kwargs):
        print "Inside Wrapper. calling method %s now..."%(func.__name__)
        return func(*args, **kwargs)
    return wrapped

Make sure to use functools.wraps while creating wrappers, even more so if the wrapper is meant for debugging since it provides sensible TraceBacks.

import types
class MyClass(object): # works only for new-style classes
    def method1(self):
        return "Inside method1"
    def __getattribute__(self, name):
        attr = super(MyClass, self).__getattribute__(name)
        if type(attr) == types.MethodType:
            attr = wrapper(attr)
        return attr


回答4:

Using python decorators is the cleanest method of doing this, as it looks like you want to debug or at least trace the code it appears.