I use X Macros() in code a lot. The value comes from only adding new data only to the "X list" and not modifying any other code.
The most common use of X Macros() is for associating error text with error codes. When new error codes are added, programmers must remember to add the code and the text, typically in separate places. The X Macro allows the new error data to be added in a single place and get automatically populated anywhere it is needed.
Unfortunately, the mechanisms use a lot of pre-compiler magic that can make the code somewhat hard to read (e.g. string joining with token1##token2
, string creation with #token
). Because of this I typically explain what the X Macro is doing in the comments.
Here is an example using the error/return values. All new data gets added to the "X_ERROR
" list. None of the other code hast to be modified.
/*
* X Macro() data list
* Format: Enum, Value, Text
*/
#define X_ERROR \
X(ERROR_NONE, 1, "Success") \
X(ERROR_SYNTAX, 5, "Invalid syntax") \
X(ERROR_RANGE, 8, "Out of range")
/*
* Build an array of error return values
* e.g. {0,5,8}
*/
static int ErrorVal[] =
{
#define X(Enum,Val,Text) Val,
X_ERROR
#undef X
};
/*
* Build an array of error enum names
* e.g. {"ERROR_NONE","ERROR_SYNTAX","ERROR_RANGE"}
*/
static char * ErrorEnum[] = {
#define X(Enum,Val,Text) #Enum,
X_ERROR
#undef X
};
/*
* Build an array of error strings
* e.g. {"Success","Invalid syntax","Out of range"}
*/
static char * ErrorText[] = {
#define X(Enum,Val,Text) Text,
X_ERROR
#undef X
};
/*
* Create an enumerated list of error indexes
* e.g. 0,1,2
*/
enum {
#define X(Enum,Val,Text) IDX_##Enum,
X_ERROR
#undef X
IDX_MAX /* Array size */
};
void showErrorInfo(void)
{
int i;
/*
* Access the values
*/
for (i=0; i<IDX_MAX; i++)
printf(" %s == %d [%s]\n", ErrorEnum[i], ErrorVal[i], ErrorText[i]);
}
You can also use X Macros() to generate code. For example to test if an error value is "known", the X Macro can generate cases in a switch statement:
/*
* Test validity of an error value
* case ERROR_SUCCESS:
* case ERROR_SYNTAX:
* case ERROR_RANGE:
*/
switch(value)
{
#define X(Enum,Val,Text) case Val:
X_ERROR
#undef X
printf("Error %d is ok\n",value);
break;
default:
printf("Invalid error: %d\n",value);
break;
}
I discovered X-macros a couple of years ago when I started making use of function pointers in my code. I am an embedded programmer and I use state machines frequently. Often I would write code like this:
/* declare an enumeration of state codes */
enum{ STATE0, STATE1, STATE2, ... , STATEX, NUM_STATES};
/* declare a table of function pointers */
p_func_t jumptable[NUM_STATES] = {func0, func1, func2, ... , funcX};
The problem was that I considered it very error prone to have to maintain the ordering of my function pointer table such that it matched the ordering of my enumeration of states.
A friend of mine introduced me to X-macros and it was like a light-bulb went off in my head. Seriously, where have you been all my life x-macros!
So now I define the following table:
#define STATE_TABLE \
ENTRY(STATE0, func0) \
ENTRY(STATE1, func1) \
ENTRY(STATE2, func2) \
...
ENTRY(STATEX, funcX) \
And I can use it as follows:
enum
{
#define ENTRY(a,b) a,
STATE_TABLE
#undef ENTRY
NUM_STATES
};
and
p_func_t jumptable[NUM_STATES] =
{
#define ENTRY(a,b) b,
STATE_TABLE
#undef ENTRY
};
as a bonus, I can also have the pre-processor build my function prototypes as follows:
#define ENTRY(a,b) static void b(void);
STATE_TABLE
#undef ENTRY
Another usage is to declare and initialize registers
#define IO_ADDRESS_OFFSET (0x8000)
#define REGISTER_TABLE\
ENTRY(reg0, IO_ADDRESS_OFFSET + 0, 0x11)\
ENTRY(reg1, IO_ADDRESS_OFFSET + 1, 0x55)\
ENTRY(reg2, IO_ADDRESS_OFFSET + 2, 0x1b)\
...
ENTRY(regX, IO_ADDRESS_OFFSET + X, 0x33)\
/* declare the registers (where _at_ is a compiler specific directive) */
#define ENTRY(a, b, c) volatile uint8_t a _at_ b:
REGISTER_TABLE
#undef ENTRY
/* initialize registers */
#def ENTRY(a, b, c) a = c;
REGISTER_TABLE
#undef ENTRY
My favourite usage however is when it comes to communication handlers
First I create a comms table, containing each command name and code:
#define COMMAND_TABLE \
ENTRY(RESERVED, reserved, 0x00) \
ENTRY(COMMAND1, command1, 0x01) \
ENTRY(COMMAND2, command2, 0x02) \
...
ENTRY(COMMANDX, commandX, 0x0X) \
I have both the uppercase and lowercase names in the table, because the upper case will be used for enums and the lowercase for function names.
Then I also define structs for each command to define what each command looks like:
typedef struct {...}command1_cmd_t;
typedef struct {...}command2_cmd_t;
etc.
Likewise I define structs for each command response:
typedef struct {...}response1_resp_t;
typedef struct {...}response2_resp_t;
etc.
Then I can define my command code enumeration:
enum
{
#define ENTRY(a,b,c) a##_CMD = c,
COMMAND_TABLE
#undef ENTRY
};
I can define my command length enumeration:
enum
{
#define ENTRY(a,b,c) a##_CMD_LENGTH = sizeof(b##_cmd_t);
COMMAND_TABLE
#undef ENTRY
};
I can define my response length enumeration:
enum
{
#define ENTRY(a,b,c) a##_RESP_LENGTH = sizeof(b##_resp_t);
COMMAND_TABLE
#undef ENTRY
};
I can determine how many commands there are as follows:
typedef struct
{
#define ENTRY(a,b,c) uint8_t b;
COMMAND_TABLE
#undef ENTRY
} offset_struct_t;
#define NUMBER_OF_COMMANDS sizeof(offset_struct_t)
NOTE: I never actually instantiate the offset_struct_t, I just use it as a way for the compiler to generator for me my number of commands.
Note then I can generate my table of function pointers as follows:
p_func_t jump_table[NUMBER_OF_COMMANDS] =
{
#define ENTRY(a,b,c) process_##b,
COMMAND_TABLE
#undef ENTRY
}
And my function prototypes:
#define ENTRY(a,b,c) void process_##b(void);
COMMAND_TABLE
#undef ENTRY
Now lastly for the coolest use ever, I can have the compiler calculate how big my transmit buffer should be.
/* reminder the sizeof a union is the size of its largest member */
typedef union
{
#define ENTRY(a,b,c) uint8_t b##_buf[sizeof(b##_cmd_t)];
COMMAND_TABLE
#undef ENTRY
}tx_buf_t
Again this union is like my offset struct, it is not instantiated, instead I can use the sizeof operator to declare my transmit buffer size.
uint8_t tx_buf[sizeof(tx_buf_t)];
Now my transmit buffer tx_buf is the optimal size and as I add commands to this comms handler, my buffer will always be the optimal size. Cool!