How is it possible to create a recursive variadic template to print out the contents of a paramater pack?
I am trying with this, but it fails to compile:
template <typename First, typename ...Args>
std::string type_name () {
return std::string(typeid(First).name()) + " " + type_name<Args...>();
}
std::string type_name () {
return "";
}
How shall I end the recursion?
You need to use partial specialisation to end the recursion, but since you can't partially specialise free functions in C++, you need to create an implementation class with a static member function.
template <typename... Args>
struct Impl;
template <typename First, typename... Args>
struct Impl<First, Args...>
{
static std::string name()
{
return std::string(typeid(First).name()) + " " + Impl<Args...>::name();
}
};
template <>
struct Impl<>
{
static std::string name()
{
return "";
}
};
template <typename... Args>
std::string type_name()
{
return Impl<Args...>::name();
}
int main()
{
std::cout << type_name<int, bool, char, double>() << std::endl; // "i b c d"
return 0;
}
That first declaration of Impl
is just a workaround for a shortcoming in g++ 4.6 (and below). It won't be necessary once it implements variadic templates correctly.
Check it out in action at ideone.com
There's actually a very elegant way to end the recursion:
template <typename Last>
std::string type_name () {
return std::string(typeid(Last).name());
}
template <typename First, typename Second, typename ...Rest>
std::string type_name () {
return std::string(typeid(First).name()) + " " + type_name<Second, Rest...>();
}
I initially tried template <typename Last>
and template <typename First, typename ...Rest>
but that was considered ambiguous (Rest can be zero elements). This question then showed me the definitive solution: Compilation Error on Recursive Variadic Template Function
Note, to avoid a bit of code duplication, you could also do:
template <typename Last>
std::string type_name () {
return std::string(typeid(Last).name());
}
template <typename First, typename Second, typename ...Rest>
std::string type_name () {
return type_name<First>() + " " + type_name<Second, Rest...>();
}
As an alternative to non-existing partial specialization for functions, you can use overloading on a typifier class:
#include <string>
#include <iostream>
#include <typeinfo>
template <unsigned int N> struct NumberToType { };
template <typename T>
std::string my_type_name(NumberToType<0> = NumberToType<0>())
{
return std::string(typeid(T).name());
}
template <typename T, typename ...Args>
std::string my_type_name(NumberToType<sizeof...(Args)> = NumberToType<sizeof...(Args)>())
{
return std::string(typeid(T).name()) + " " + my_type_name<Args...>(NumberToType<sizeof...(Args)-1>());
}
int main()
{
std::cout << my_type_name<int, double, char>() << std::endl;
}
As an alternative, you can unpack the parameter pack in-place as in the following example:
#include<string>
#include<iostream>
#include<typeinfo>
template <typename T, typename ...Args>
std::string type_name () {
std::string str = typeid(T).name();
int arr[] = { 0, (str += std::string{" "} + typeid(Args).name(), 0)... };
(void)arr;
return str;
}
int main() {
auto str = type_name<int, double, char>();
std::cout << str << std::endl;
}
Recursion is not required actually to do that.
C++17's if constexpr
allows you to do this in one template declaration which is, unlike a lot of the older solutions, pretty easy to understand:
template <typename T, typename ...Args>
std::string type_name() {
if constexpr (!sizeof...(Args)) {
return std::string(typeid(T).name());
} else {
return std::string(typeid(T).name()) + " " + type_name<Args...>();
}
}