可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
回答1:
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame
is called myData
:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData
if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
回答2:
You can also work with a so called boolean vector, aka logical
:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the !
operator acts as a NOT, i.e. !TRUE == FALSE
:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to @mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A
is assigned NA
(not a number) where A
exceeds 4.
回答3:
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id
column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
回答4:
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset
function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
回答5:
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
回答6:
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
回答7:
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!