可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
This question already has answers here:
Closed 2 years ago.
In Java, given n Items, each with weight w, how does one choose a random Item from the collection with a chance equal to w?
Assume each weight is a double from 0.0 to 1.0, and that the weights in the collection sum to 1. Item.getWeight() returns the Item's weight.
回答1:
Item[] items = ...;
// Compute the total weight of all items together
double totalWeight = 0.0d;
for (Item i : items)
{
totalWeight += i.getWeight();
}
// Now choose a random item
int randomIndex = -1;
double random = Math.random() * totalWeight;
for (int i = 0; i < items.length; ++i)
{
random -= items[i].getWeight();
if (random <= 0.0d)
{
randomIndex = i;
break;
}
}
Item myRandomItem = items[randomIndex];
回答2:
One elegant way would be to sample an exponential distribution http://en.wikipedia.org/wiki/Exponential_distribution where the weights will be the rate of the distribution (lambda). Finally, you simply select the smallest sampled value.
In Java this looks like this:
public static <E> E getWeightedRandom(Map<E, Double> weights, Random random) {
E result = null;
double bestValue = Double.MAX_VALUE;
for (E element : weights.keySet()) {
double value = -Math.log(random.nextDouble()) / weights.get(element);
if (value < bestValue) {
bestValue = value;
result = element;
}
}
return result;
}
I am not sure whether this is more efficient than the other approaches, but if execution time is not the issue, it is a nicely looking solution.
And this is the same idea using Java 8 and Streams:
public static <E> E getWeightedRandomJava8(Stream<Entry<E, Double>> weights, Random random) {
return weights
.map(e -> new SimpleEntry<E,Double>(e.getKey(),-Math.log(random.nextDouble()) / e.getValue()))
.min((e0,e1)-> e0.getValue().compareTo(e1.getValue()))
.orElseThrow(IllegalArgumentException::new).getKey();
}
You can obtain the input weights stream for instance from a map by converting it with .entrySet().stream()
.
回答3:
TreeMap does already do all the work for you.
Create a TreeMap. Create weights based on your method of choice. Add the weights beginning with 0.0 while adding the weight of the last element to your running weight counter.
i.e. (Scala):
var count = 0.0
for { object <- MyObjectList } { //Just any iterator over all objects
map.insert(count, object)
count += object.weight
}
Then you just have to generate rand = new Random(); num = rand.nextDouble() * count
to get a valid number.
map.to(num).last // Scala
map.floorKey(num) // Java
will give you the random weighted item.
For smaller amounts of buckets also possible: Create an array of i.e. 100,000 Int's and distribute the number of the bucket based on the weight across the fields. Then you create a random Integer between 0 and 100,000-1 and you immediately get the bucket-number back.
回答4:
If you want runtime selection efficiency then taking a little more time on the setup would probably be best. Here is one possible solution. It has more code but guarantees log(n) selection.
WeightedItemSelector Implements selection of a random object from a collection of weighted objects.
Selection is guaranteed to run in log(n) time.
public class WeightedItemSelector<T> {
private final Random rnd = new Random();
private final TreeMap<Object, Range<T>> ranges = new TreeMap<Object, Range<T>>();
private int rangeSize; // Lowest integer higher than the top of the highest range.
public WeightedItemSelector(List<WeightedItem<T>> weightedItems) {
int bottom = 0; // Increments by size of non zero range added as ranges grows.
for(WeightedItem<T> wi : weightedItems) {
int weight = wi.getWeight();
if(weight > 0) {
int top = bottom + weight - 1;
Range<T> r = new Range<T>(bottom, top, wi);
if(ranges.containsKey(r)) {
Range<T> other = ranges.get(r);
throw new IllegalArgumentException(String.format("Range %s conflicts with range %s", r, other));
}
ranges.put(r, r);
bottom = top + 1;
}
}
rangeSize = bottom;
}
public WeightedItem<T> select() {
Integer key = rnd.nextInt(rangeSize);
Range<T> r = ranges.get(key);
if(r == null)
return null;
return r.weightedItem;
}
}
Range Implements range selection to leverage TreeMap selection.
class Range<T> implements Comparable<Object>{
final int bottom;
final int top;
final WeightedItem<T> weightedItem;
public Range(int bottom, int top, WeightedItem<T> wi) {
this.bottom = bottom;
this.top = top;
this.weightedItem = wi;
}
public WeightedItem<T> getWeightedItem() {
return weightedItem;
}
@Override
public int compareTo(Object arg0) {
if(arg0 instanceof Range<?>) {
Range<?> other = (Range<?>) arg0;
if(this.bottom > other.top)
return 1;
if(this.top < other.bottom)
return -1;
return 0; // overlapping ranges are considered equal.
} else if (arg0 instanceof Integer) {
Integer other = (Integer) arg0;
if(this.bottom > other.intValue())
return 1;
if(this.top < other.intValue())
return -1;
return 0;
}
throw new IllegalArgumentException(String.format("Cannot compare Range objects to %s objects.", arg0.getClass().getName()));
}
/* (non-Javadoc)
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append("{\"_class\": Range {\"bottom\":\"").append(bottom).append("\", \"top\":\"").append(top)
.append("\", \"weightedItem\":\"").append(weightedItem).append("}");
return builder.toString();
}
}
WeightedItem simply encapsulates an item to be selected.
public class WeightedItem<T>{
private final int weight;
private final T item;
public WeightedItem(int weight, T item) {
this.item = item;
this.weight = weight;
}
public T getItem() {
return item;
}
public int getWeight() {
return weight;
}
/* (non-Javadoc)
* @see java.lang.Object#toString()
*/
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append("{\"_class\": WeightedItem {\"weight\":\"").append(weight).append("\", \"item\":\"")
.append(item).append("}");
return builder.toString();
}
}
回答5:
- Give some arbitrary ordering to items... (i1, i2, ..., in)... with weights w1, w2, ..., wn.
- Choose a random number between 0 and 1 (with sufficient granularity, by using any randomization function and appropriate scaling). Call this r0.
- Let j = 1
- Subtract wj from your r(j-1) to get rj. If rj <= 0, then you select item ij. Otherwise, increment j and repeat.
I think I've done it like that before... but there are probably more efficient ways to do this.
回答6:
Below is a randomizer that maintains precision in proportions as well:
public class WeightedRandomizer
{
private final Random randomizer;
public WeightedRandomizer(Random randomizer)
{
this.randomizer = randomizer;
}
public IWeighable getRandomWeighable(List<IWeighable> weighables)
{
double totalWeight = 0.0;
long totalSelections = 1;
List<IWeighable> openWeighables = new ArrayList<>();
for (IWeighable weighable : weighables)
{
totalWeight += weighable.getAllocation();
totalSelections += weighable.getNumSelections();
}
for(IWeighable weighable : weighables)
{
double allocation = weighable.getAllocation() / totalWeight;
long numSelections = weighable.getNumSelections();
double proportion = (double) numSelections / (double) totalSelections;
if(proportion < allocation)
{
openWeighables.add(weighable);
}
}
IWeighable selection = openWeighables.get(this.randomizer.nextInt(openWeighables.size()));
selection.setNumSelections(selection.getNumSelections() + 1);
return selection;
}
}
回答7:
With a Item
class that contains a getWeight()
method (as in your question):
/**
* Gets a random-weighted object.
* @param items list with weighted items
* @return a random item from items with a chance equal to its weight.
* @assume total weight == 1
*/
public static Item getRandomWeighted(List<Item> items) {
double value = Math.random(), weight = 0;
for (Item item : items) {
weight += item.getWeight();
if (value < weight)
return item;
}
return null; // Never will reach this point if assumption is true
}
With a Map
and more generic method:
/**
* Gets a random-weighted object.
* @param balancedObjects the map with objects and their weights.
* @return a random key-object from the map with a chance equal to its weight/totalWeight.
* @throws IllegalArgumentException if total weight is not positive.
*/
public static <E> E getRandomWeighted(Map<E, ? extends Number> balancedObjects) throws IllegalArgumentException {
double totalWeight = balancedObjects.values().stream().mapToInt(Number::intValue).sum(); // Java 8
if (totalWeight <= 0)
throw new IllegalArgumentException("Total weight must be positive.");
double value = Math.random()*totalWeight, weight = 0;
for (Entry<E, ? extends Number> e : balancedObjects.entrySet()) {
weight += e.getValue().doubleValue();
if (value < weight)
return e.getKey();
}
return null; // Never will reach this point
}