With the first release of Java 8 (b132) on Mac OS X (Mavericks), this code using the new java.time package works:
String input = "20111203123456";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmss");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
Rendering:
2011-12-03T12:34:56
But when I add "SS" for fraction-of-second (and "55" as input), as specified in the DateTimeFormatter class doc, an exception is thrown:
java.time.format.DateTimeParseException: Text '2011120312345655' could not be parsed at index 0
The doc says Strict mode is used by default and requires the same number of format characters as input digits. So I'm confused why this code fails:
String input = "2011120312345655";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmssSS");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
Another example using example from documentation ("978") (fails):
String input = "20111203123456978";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmssSSS");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
This example works, adding a decimal point (but I find no such requirement in the doc):
String input = "20111203123456.978";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmss.SSS");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
Renders:
localDateTime: 2011-12-03T12:34:56.978
Omitting the period character from either the input string or the format cause a fail.
Fails:
String input = "20111203123456.978";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmssSSS");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
Fails:
String input = "20111203123456978";
DateTimeFormatter formatter = DateTimeFormatter.ofPattern( "yyyyMMddHHmmss.SSS");
LocalDateTime localDateTime = LocalDateTime.parse( input, formatter );
Bug – Fixed in Java 9
This issue was already reported in JDK-bug-log. Stephen Colebourne mentions as work-around following solution:
DateTimeFormatter dtf =
new DateTimeFormatterBuilder()
.appendPattern("yyyyMMddHHmmss")
.appendValue(ChronoField.MILLI_OF_SECOND, 3)
.toFormatter();
Note: This workaround does not cover your use-case of only two pattern symbols SS. An adjustment might only be to use other fields like MICRO_OF_SECOND (6 times SSSSSS) or NANO_OF_SECOND (9 times SSSSSSSSS). For two fraction digits see my update below.
@PeterLawrey About the meaning of pattern symbol "S" see this documentation:
Fraction: Outputs the nano-of-second field as a fraction-of-second.
The nano-of-second value has nine digits, thus the count of pattern
letters is from 1 to 9. If it is less than 9, then the nano-of-second
value is truncated, with only the most significant digits being
output. When parsing in strict mode, the number of parsed digits must
match the count of pattern letters. When parsing in lenient mode, the
number of parsed digits must be at least the count of pattern letters,
up to 9 digits.
So we see that S stands for any fraction of second (including nanosecond), not just milliseconds. Furthermore, the fractional part does at the moment not take well in adjacent value parsing, unfortunately.
EDIT:
As background here some remarks about adjacent value parsing. As long as fields are separated by literals like a decimal point or time part separators (colon), the interpretation of fields in a text to be parsed is not difficult because the parser then knows easily when to stop i.e. when the field part is ended and when the next field starts. Therefore the JSR-310 parser can process the text sequence if you specify a decimal point.
But if you have a sequence of adjacent digits spanning over multiple fields then some implementation difficulties arise. In order to let the parser know when a field stops in text it is necessary to instruct the parser in advance that a given field is represented by a fixed-width of digit chars. This works with all appendValue(...)
-methods which assume numerical representations.
Unfortunately JSR-310 has not managed well to do this also with the fractional part (appendFraction(...)
). If you look for the keyword "adjacent" in the javadoc of class DateTimeFormatterBuilder
then you find that this feature is ONLY realized by appendValue(...)
-methods. Note that the spec for pattern letter S is slightly different but internally delegates to appendFraction()
-method. I assume we will at least have to waint until Java 9 (as reported in JDK-bug-log, or later???) until fraction parts can manage adjacent value parsing as well.
Update from 2015-11-25:
The following code using two fraction digits only does not work and throws a DateTimeParseException
.
DateTimeFormatter dtf =
new DateTimeFormatterBuilder()
.appendPattern("yyyyMMddHHmmssSS")
.appendValue(ChronoField.MILLI_OF_SECOND, 2)
.toFormatter();
String input = "2011120312345655";
LocalDateTime.parse(input, dtf); // abort
The workaround
String input = "2011120312345655";
SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMddHHmmssSS");
Date d = sdf.parse(input);
System.out.println(d.toInstant()); // 2011-12-03T12:34:56.055Z
does not work because SimpleDateFormat
interpretes the fraction in a wrong way (see output, 55 ms instead of 550 ms).
What is left as solution is either waiting an undertermined long time until Java 9 (or later?) or writing your own hack or using 3rd-party libraries as solution.
Solution based on a dirty hack:
String input = "2011120312345655";
DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyyMMddHHmmss");
int len = input.length();
LocalDateTime ldt = LocalDateTime.parse(input.substring(0, len - 2), dtf);
int millis = Integer.parseInt(input.substring(len - 2)) * 10;
ldt = ldt.plus(millis, ChronoUnit.MILLIS);
System.out.println(ldt); // 2011-12-03T12:34:56.550
Solution using Joda-Time:
String input = "2011120312345655";
DateTimeFormatter dtf = DateTimeFormat.forPattern("yyyyMMddHHmmssSS");
System.out.println(dtf.parseLocalDateTime(input)); // 2011-12-03T12:34:56.550
Solution using my library Time4J:
String input = "2011120312345655";
ChronoFormatter<PlainTimestamp> f =
ChronoFormatter.ofTimestampPattern("yyyyMMddHHmmssSS", PatternType.CLDR, Locale.ROOT);
System.out.println(f.parse(input)); // 2011-12-03T12:34:56.550
Update from 2016-04-29:
As people can see via the JDK-issue mentioned above, it is now marked as resolved - for Java 9.
DateTimeFormatterBuilder#appendFraction(ChronoField.MILLI_OF_SECOND, 0, 3, true)
Something like this helped me
Here's an algorithm which adjusts the order of the trailing zeros that are conventionally returned from the formatted date String
.
/**
* Takes a Date and provides the format whilst compensating for the mistaken representation of sub-second values.
* i.e. 2017-04-03-22:46:19.000991 -> 2017-04-03-22:46:19.991000
* @param pDate Defines the Date object to format.
* @param pPrecision Defines number of valid subsecond characters contained in the system's response.
* */
private static final String subFormat(final Date pDate, final SimpleDateFormat pSimpleDateFormat, final int pPrecision) throws ParseException {
// Format as usual.
final String lString = pSimpleDateFormat.format(pDate);
// Count the number of characters.
final String lPattern = pSimpleDateFormat.toLocalizedPattern();
// Find where the SubSeconds are.
final int lStart = lPattern.indexOf('S');
final int lEnd = lPattern.lastIndexOf('S');
// Ensure they're in the expected format.
for(int i = lStart; i <= lEnd; i++) { if(lPattern.charAt(i) != 'S') {
// Throw an Exception; the date has been provided in the wrong format.
throw new ParseException("Unable to process subseconds in the provided form. (" + lPattern + ").", i);
} }
// Calculate the number of Subseconds. (Account for zero indexing.)
final int lNumSubSeconds = (lEnd - lStart) + 1;
// Fetch the original quantity.
String lReplaceString = lString.substring(lStart + (lNumSubSeconds - pPrecision), lStart + lNumSubSeconds);
// Append trailing zeros.
for(int i = 0; i < lNumSubSeconds - pPrecision; i++) { lReplaceString += "0"; }
// Return the String.
return lString.substring(0, lStart) + lReplaceString;
}