I want to implement an algorithm that inserts sorted arrays into binary search trees but I don't want ending up with a tree that only grows to one side.
Do you have any ideas?
Thanks.
I want to implement an algorithm that inserts sorted arrays into binary search trees but I don't want ending up with a tree that only grows to one side.
Do you have any ideas?
Thanks.
This should give you a balanced tree (in O(n)):
Java-like code:
TreeNode sortedArrayToBST(int arr[], int start, int end) {
if (start > end) return null;
// same as (start+end)/2, avoids overflow.
int mid = start + (end - start) / 2;
TreeNode node = new TreeNode(arr[mid]);
node.left = sortedArrayToBST(arr, start, mid-1);
node.right = sortedArrayToBST(arr, mid+1, end);
return node;
}
TreeNode sortedArrayToBST(int arr[]) {
return sortedArrayToBST(arr, 0, arr.length-1);
}
Code derived from here.
public class SortedArrayToBST {
public TreeNode sortedArrayToBST(int[] num) {
if (num == null) {
return null;
}
return buildBST(num, 0, num.length - 1);
}
private TreeNode buildBST(int[] num, int start, int end) {
if (start > end) {
return null;
}
int mid = start + (end - start) / 2;
TreeNode root = new TreeNode(num[mid]);
TreeNode left = buildBST(num, start, mid - 1);
TreeNode right = buildBST(num, mid + 1, end);
root.left = left;
root.right = right;
return root;
}
}
Insert them in pseudo-random order, like here:
#include <stdio.h>
int array[] = {1,2,3,4,5,6,7,8,9,10};
#define COUNT 10
#define STEP 7 /* must be relatively prime wrt COUNT */
#define START 5 /* not important */
int main(void)
{
unsigned idx;
idx=START;
while(1) {
printf("[%u] = %u\n", idx, array[idx] );
// do_insert(array[idx] );
idx = (idx + STEP ) % COUNT;
if (idx == START) break;
}
return 0;
}