可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
How do I create a custom class to loop over consecutive pairs of items in a STL container using a range-based loop?
This is the syntax and output I want:
std::list<int> number_list;
number_list.push_back(1);
number_list.push_back(2);
number_list.push_back(3);
auto paired_list = Paired(number_list);
for (const auto & pair : paired_list) {
std::printf("The pair is (%d, %d)\n", *(pair[0]), *(pair[1]));
// or
//std::printf("The pair is (%d, %d)\n", *(pair.first), *(pair.second));
}
// output:
// The pair is (1, 2)
// The pair is (2, 3)
I know these (and more) are needed, but I can't figure it out:
template <class T>
class Paired {
???
class iterator {
???
}
iterator begin() {
...
}
iterator end() {
...
}
}
Don't worry about const
modifiers.
No boost.
Do not modify or copy objects in the container.
回答1:
Here's what I would do.
#include <iterator>
#include <utility>
template <typename FwdIt> class adjacent_iterator {
public:
adjacent_iterator(FwdIt first, FwdIt last)
: m_first(first), m_next(first == last ? first : std::next(first)) { }
bool operator!=(const adjacent_iterator& other) const {
return m_next != other.m_next; // NOT m_first!
}
adjacent_iterator& operator++() {
++m_first;
++m_next;
return *this;
}
typedef typename std::iterator_traits<FwdIt>::reference Ref;
typedef std::pair<Ref, Ref> Pair;
Pair operator*() const {
return Pair(*m_first, *m_next); // NOT std::make_pair()!
}
private:
FwdIt m_first;
FwdIt m_next;
};
template <typename FwdIt> class adjacent_range {
public:
adjacent_range(FwdIt first, FwdIt last)
: m_first(first), m_last(last) { }
adjacent_iterator<FwdIt> begin() const {
return adjacent_iterator<FwdIt>(m_first, m_last);
}
adjacent_iterator<FwdIt> end() const {
return adjacent_iterator<FwdIt>(m_last, m_last);
}
private:
FwdIt m_first;
FwdIt m_last;
};
template <typename C> auto make_adjacent_range(C& c) -> adjacent_range<decltype(c.begin())> {
return adjacent_range<decltype(c.begin())>(c.begin(), c.end());
}
#include <iostream>
#include <vector>
using namespace std;
void test(const vector<int>& v) {
cout << "[ ";
for (const auto& p : make_adjacent_range(v)) {
cout << p.first << "/" << p.second << " ";
}
cout << "]" << endl;
}
int main() {
test({});
test({11});
test({22, 33});
test({44, 55, 66});
test({10, 20, 30, 40});
}
This prints:
[ ]
[ ]
[ 22/33 ]
[ 44/55 55/66 ]
[ 10/20 20/30 30/40 ]
Notes:
I haven't exhaustively tested this, but it respects forward iterators (because it doesn't try to use operations beyond ++, !=, and *).
range-for has extremely weak requirements; it doesn't require all of the things that forward iterators are supposed to provide. Therefore I have achieved range-for's requirements but no more.
The "NOT m_first" comment is related to how the end of the range is approached. An adjacent_iterator constructed from an empty range has m_first == m_next which is also == last. An adjacent_iterator constructed from a 1-element range has m_first pointing to the element and m_next == last. An adjacent_iterator constructed from a multi-element range has m_first and m_next pointing to consecutive valid elements. As it is incremented, eventually m_first will point to the final element and m_next will be last. What adjacent_range's end() returns is constructed from (m_last, m_last). For a totally empty range, this is physically identical to begin(). For 1+ element ranges, this is not physically identical to a begin() that has been incremented until we don't have a complete pair - such iterators have m_first pointing to the final element. But if we compare iterators based on their m_next, then we get correct semantics.
The "NOT std::make_pair()" comment is because make_pair() decays, while we actually want a pair of references. (I could have used decltype, but iterator_traits will tell us the answer too.)
The major remaining subtleties would revolve around banning rvalues as inputs to make_adjacent_range (such temporaries would not have their lives prolonged; the Committee is studying this issue), and playing an ADL dance to respect non-member begin/end, as well as built-in arrays. These exercises are left to the reader.
回答2:
edit I was using transform
.
Use adjacent_difference
.
The second version takes a binary function which transforms the two values into a new
(different) value:
string make_message(int first, int second) {
ostringstream oss;
oss << "The pair is (" << first << ", " << second << ")";
return oss.str();
}
We can now transform the adjacent pairs into a third range. We'll use the ostream_iterator
to use cout
like a range:
list<int> numbers;
//...
adjacent_difference(numbers.begin(), numbers.end(),
ostream_iterator<string>(cout, "\n"),
make_message);
2nd edit
I found a question on comp.lang.c++.moderated asking why there aren't more 'adjacent' functions in the standard library such as for_each_adjacent
. The reply said they were trivial to implement using std::mismatch
.
I think this would be a better direction to go than implementing a special adjacent iterator.
回答3:
Try this.
#include <list>
#include <iostream>
template<class T, class TIter = typename T::iterator, class TVal = typename T::value_type>
class PairedImpl {
T& m_t;
public:
class Iter {
TIter m_it;
public:
Iter(const TIter & it) : m_it(it) {}
bool operator!=(const Iter& it) { return m_it != it.m_it; }
Iter& operator++() { ++m_it; return *this; }
const Iter & operator *() const { return *this; }
const TVal & first() const { return *m_it; }
const TVal & second() const { return *std::next(m_it); }
};
PairedImpl(T& t) : m_t(t) {}
Iter begin() { return Iter(m_t.begin()); }
Iter end() {
TIter end = m_t.end();
return Iter(m_t.empty() ? end : --end);
}
};
template<class T>
PairedImpl<T> Paired(T& t) {
return PairedImpl<T>(t);
}
Usage
int main()
{
std::list<int> lst;
lst.push_back(1);
lst.push_back(2);
lst.push_back(3);
lst.push_back(4);
lst.push_back(5);
for (const auto & pair : Paired(lst)) {
std::cout << "(" << pair.first() << ", " << pair.second() << ")" << std::endl;
}
return 0;
}
回答4:
Okay, an hour with no answers, I've come up with a solution which works. Note that this uses my own FixedLengthVector
which is exactly what it sounds like.
template <class T>
class Grouped {
private:
// length of grouped objects
static const unsigned length_ = 2;
// hold pointer to base container to avoid comparing incompatible iterators
T * base_container_;
public:
// constructor
Grouped(T & base_container) :
base_container_(&base_container) {
}
// iterator
class iterator {
private:
// hold pointer to base container to avoid comparing incompatible iterators
T * base_container_;
// hold pointers to objects in base container
FixedLengthVector<length_, typename T::value_type *> ptr_;
// hold iterator to last object
typename T::iterator last_iterator_;
public:
// constructor
iterator(T & base_container, typename T::iterator & it)
: base_container_(&base_container),
last_iterator_(it) {
// set up pointers if possible
unsigned i = 0;
// check for end iterator
if (last_iterator_ == base_container_->end()) {
ptr_.fill(NULL);
return;
}
// set up first object
ptr_[0] = &*last_iterator_;
// set up next objects
for (unsigned i = 1; i < length_; ++i) {
++last_iterator_;
if (last_iterator_ == base_container_->end()) {
ptr_.fill(NULL);
return;
}
ptr_[i] = &*last_iterator_;
}
}
// dereference operator
FixedLengthVector<length_, typename T::value_type *> & operator * (void) {
assert(ptr_[0] != NULL);
return ptr_;
}
// pre-increment
iterator & operator ++ (void) {
// can't increase past end
assert(last_iterator_ != base_container_->end());
// find next iterator
++last_iterator_;
if (last_iterator_ == base_container_->end()) {
ptr_.fill(NULL);
return * this;
}
// cycle pointers left
for (unsigned i = 1; i < length_; ++i) {
ptr_[i - 1] = ptr_[i];
}
ptr_[length_ - 1] = &*last_iterator_;
return * this;
}
// equality comparison
bool operator == (const iterator & that) const {
return base_container_ == that.base_container_ &&
last_iterator_ == that.last_iterator_;
}
// inequality comparison
bool operator != (const iterator & that) const {
return !(*this == that);
}
};
// end iterator
iterator end() {
return iterator(*base_container_, base_container_->end());
}
// begin iterator
iterator begin() {
return iterator(*base_container_, base_container_->begin());
}
};