可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have two tables and I would like to append them so that only all the data in table A is retained and data from table B is only added if its key is unique (Key values are unique in table A and B however in some cases a Key will occur in both table A and B).
I think the way to do this will involve some sort of filtering join (anti-join) to get values in table B that do not occur in table A then append the two tables.
I am familiar with R and this is the code I would use to do this in R.
library("dplyr")
## Filtering join to remove values already in "TableA" from "TableB"
FilteredTableB <- anti_join(TableB,TableA, by = "Key")
## Append "FilteredTableB" to "TableA"
CombinedTable <- bind_rows(TableA,FilteredTableB)
How would I achieve this in python?
回答1:
Consider the following dataframes
TableA = pd.DataFrame(np.random.rand(4, 3),
pd.Index(list('abcd'), name='Key'),
['A', 'B', 'C']).reset_index()
TableB = pd.DataFrame(np.random.rand(4, 3),
pd.Index(list('aecf'), name='Key'),
['A', 'B', 'C']).reset_index()
TableA
TableB
This is one way to do what you want
Method 1
# Identify what values are in TableB and not in TableA
key_diff = set(TableB.Key).difference(TableA.Key)
where_diff = TableB.Key.isin(key_diff)
# Slice TableB accordingly and append to TableA
TableA.append(TableB[where_diff], ignore_index=True)
Method 2
rows = []
for i, row in TableB.iterrows():
if row.Key not in TableA.Key.values:
rows.append(row)
pd.concat([TableA.T] + rows, axis=1).T
Timing
4 rows with 2 overlap
Method 1 is much quicker
10,000 rows 5,000 overlap
loops are bad
回答2:
I had the same problem. This answer using how='outer'
and indicator=True
of merge inspired me to come up with this solution:
import pandas as pd
import numpy as np
TableA = pd.DataFrame(np.random.rand(4, 3),
pd.Index(list('abcd'), name='Key'),
['A', 'B', 'C']).reset_index()
TableB = pd.DataFrame(np.random.rand(4, 3),
pd.Index(list('aecf'), name='Key'),
['A', 'B', 'C']).reset_index()
print('TableA', TableA, sep='\n')
print('TableB', TableB, sep='\n')
TableB_only = pd.merge(
TableA, TableB,
how='outer', on='Key', indicator=True, suffixes=('_foo','')).query(
'_merge == "right_only"')
print('TableB_only', TableB_only, sep='\n')
Table_concatenated = pd.concat((TableA, TableB_only), join='inner')
print('Table_concatenated', Table_concatenated, sep='\n')
Which prints this output:
TableA
Key A B C
0 a 0.035548 0.344711 0.860918
1 b 0.640194 0.212250 0.277359
2 c 0.592234 0.113492 0.037444
3 d 0.112271 0.205245 0.227157
TableB
Key A B C
0 a 0.754538 0.692902 0.537704
1 e 0.499092 0.864145 0.004559
2 c 0.082087 0.682573 0.421654
3 f 0.768914 0.281617 0.924693
TableB_only
Key A_foo B_foo C_foo A B C _merge
4 e NaN NaN NaN 0.499092 0.864145 0.004559 right_only
5 f NaN NaN NaN 0.768914 0.281617 0.924693 right_only
Table_concatenated
Key A B C
0 a 0.035548 0.344711 0.860918
1 b 0.640194 0.212250 0.277359
2 c 0.592234 0.113492 0.037444
3 d 0.112271 0.205245 0.227157
4 e 0.499092 0.864145 0.004559
5 f 0.768914 0.281617 0.924693
回答3:
You'll have both tables TableA
and TableB
such that both DataFrame
objects have columns with unique values in their respective tables, but some columns may have values that occur simultaneously (have the same values for a row) in both tables.
Then, we want to merge the rows in TableA
with the rows in TableB
that don't match any in TableA
for a 'Key' column. The concept is to picture it as comparing two series of variable length, and combining the rows in one series sA
with the other sB
if sB
's values don't match sA
's. The following code solves this exercise:
import pandas as pd
TableA = pd.DataFrame([[2, 3, 4], [5, 6, 7], [8, 9, 10]])
TableB = pd.DataFrame([[1, 3, 4], [5, 7, 8], [9, 10, 0]])
removeTheseIndexes = []
keyColumnA = TableA.iloc[:,1] # your 'Key' column here
keyColumnB = TableB.iloc[:,1] # same
for i in range(0, len(keyColumnA)):
firstValue = keyColumnA[i]
for j in range(0, len(keyColumnB)):
copycat = keyColumnB[j]
if firstValue == copycat:
removeTheseIndexes.append(j)
TableB.drop(removeTheseIndexes, inplace = True)
TableA = TableA.append(TableB)
TableA = TableA.reset_index(drop=True)
Note this affects TableB
's data as well. You can use inplace=False
and re-assign it to a newTable
, then TableA.append(newTable)
alternatively.
# Table A
0 1 2
0 2 3 4
1 5 6 7
2 8 9 10
# Table B
0 1 2
0 1 3 4
1 5 7 8
2 9 10 0
# Set 'Key' column = 1
# Run the script after the loop
# Table A
0 1 2
0 2 3 4
1 5 6 7
2 8 9 10
3 5 7 8
4 9 10 0
# Table B
0 1 2
1 5 7 8
2 9 10 0
回答4:
Easiest answer imaginable:
tableB = pd.concat([tableB, pd.Series(1)], axis=1)
mergedTable = tableA.merge(tableB, how="left" on="key")
answer = mergedTable[mergedTable.iloc[:,-1].isnull()][tableA.columns.tolist()]
Should be the fastest proposed as well.