评论赠书:你认为或者你期待人工智能下一个发展方向是什么?我们将会选3位留言质量较高的用户,免费赠送《AI的25种可能》。(互动平台:“第一财经资讯”微信公众号 )
世界上最聪明的网站Edge,每年一次,让几十位全球最伟大的头脑坐在同一张桌子旁,共同解答关乎人类命运的同一个大问题,开启一场智识的探险,一次思想的旅行!
这次,包括史蒂芬·平克、朱迪亚·珀尔、丹尼尔·丹尼特、迈克斯·泰格马克等在内的25位计算机科学家、心理学家、物理学家、科技史学家将话题聚焦到了人工智能,他们探讨了AI的25种可能,也是人类未来的25种可能。
今天的文章是对人工智能趋势的探讨,朱迪亚·珀尔对当下火热的深度学习持怀疑态度:深度学习有自己的动力学机制,一旦你喂给它大量的数据,它就活跃起来,绝大多数时候都会给出正确的结果。可一旦结果错了,你不会知道哪里出了问题,也不知道该如何修复。乔治·戴森则认为,计算的未来是模拟。汤姆·格里菲思从认知科学家角度提出了,机器学习的下一个研究领域,必然是人类良好模型。
编者:约翰·布罗克曼(John Brockman)
出版社:湛庐文化/浙江人民出版社
朱迪亚·珀尔:不透明学习机器的局限性
当前的机器学习系统几乎完全在统计模式或者说模型盲(model-blind)的模式下运行,这在许多方面类似于将函数拟合到大量点数据。这样的系统不能推理“如果……会怎样?”的问题,因此不能作为强人工智能的基础,强人工智能是模拟人类推理和能力的人工智能。为了达到人类智能水平,学习机器需要现实蓝图的指导,这种蓝图是一个模型,类似于当我们在陌生城市开车时给我们指路的道路地图。
我认为机器学习是一种工具,使我们从研究数据走到研究概率。但是,从概率到实际理解,我们仍然需要多迈出两步,非常大的两步。
一是预测行动的结果。第一层是统计推理。统计推理能告诉你的,只是你看到的一件事如何改变你对另一件事的看法。例如,某症状能告诉你得了哪一种疾病。然后,是第二层。第二层包含了第一层,但第一层却不包含第二层。第二层处理的是行动。“如果我们抬高价格会怎样?”“如果你让我笑了,会怎样?”第二层需要的是干预信息,这些信息是第一层所没有的。这些信息可被编码成概率图模型,它仅仅告诉我们哪个变量对另一个变量有响应。
二是反事实想象。“如果这个东西重两倍,会怎样?”“如果当初我没有这样做,会怎样?”“治好了我头疼的是阿司匹林还是刚刚打的盹?”反事实在感觉中属于最高层次,即使我们能够预测所有行动的结果,但却无法得到反事实。它们需要一种额外的东西,以等式的形式告诉我们对于其他变量发生的变化,某个变量会如何反应。
因果推理研究的一个突出成就是对干预和反事实的算法化,也就是对层级结构最高两层的算法化。当我思考机器学习的成功并试图把它推广到未来的人工智能时,我问自己:“我们是否意识到了在因果推理领域中发现的基本局限性?我们准备绕过阻碍我们从一个层级升到另一个层级的理论障碍吗?”
所以我认为,数据科学只是一门有助于解释数据的科学,而解释数据是一个两体问题,将数据与现实联系起来。但无论数据有多“大”,人们操控数据多么熟练,数据本身并不是一门科学。不透明的学习系统可能会把我们带到巴比伦,但绝不是雅典。
乔治·戴森:计算的未来是模拟
电子工业在过去的几百年中经历了两个根本转变:从模拟到数字,从真空管到固态器件。这些转变一起发生,但并不意味着它们有着密不可分的联系。正如使用真空管可以实现数字计算一样,模拟计算也可以在固态器件中实现。即使真空管在商业上已经消失,但模拟计算仍旧十分活跃。
模拟计算和数字计算之间没有精确的区别。一般而言,数字计算涉及整数、二进制序列、确定性逻辑和被理想化为离散增量的时间。而模拟计算涉及实数、非确定性逻辑和连续函数,以及存在于现实世界中的连续时间。
想象一下,你需要找到一条路的中间点。你可以使用任何可用的增量来测量它的宽度,然后用数字方法计算出距离中间点最近的增量。或者,你可以使用一根带子作为模拟计算机,量出道路的宽度然后对折直接找到中间点。这种方法不受增量的局限。
许多系统在模拟和数字之间转换运行。一棵树将各种各样的输入整合成连续函数,但是如果你砍倒那棵树,你就会发现它一直在用数字方法计年。
在模拟计算中,复杂性存在于网络拓扑结构而不是代码里。信息被处理为诸如电压和相对脉冲频率之类的值的连续函数,而不是对离散的位串的逻辑运算。因为不能容忍错误或模糊,数字计算需要随时纠正错误。而模拟计算可以容忍错误,允许错误的出现。
汤姆·格里菲思:我们缺少的是人类的良好模型,机器学习的关键必然是人类的学习
价值对齐,就是使自动化智能系统的价值与人的价值对齐。在人工智能研究中,价值对齐只是一个小的主题,但对它的研究日渐增加。用于解决这个问题的一个工具就是反向强化学习。
强化学习是训练智能机器的一种标准方法。通过将特定的结果和奖励联系起来,可以训练机器学习系统遵循产生特定结果的策略。现代机器学习系统可以通过应用强化学习算法找到非常有效的策略来玩电脑游戏,从简单的街机游戏到复杂的实时策略游戏。反向强化学习扭转了这种途径:通过观察已经学习了有效策略的智能主体的行为,我们可以推断导致这些策略发展的奖励。
最终,我们需要的是一种方法,它能描述人类思维的运作原理,具有理性的普遍性和启发式的准确性。实现这一目标的一种方法是从合理性开始,考虑如何让它朝现实的方向发展。把合理性作为描述任何现实世界行为的基础,这就存在一个问题,那就是,在许多情况下,计算合理行为需要主体拥有大量的计算资源。如果你正在做出一个非常重要的决定,并且有很多时间来评估你的选择,那么花费这些资源也许是值得的,但是人类的大多数决定都是快速做出的,而且风险相对较低。无论在什么情况下,只要你做出决定花费的时间成本很昂贵(至少因为你可以把这些时间花在别的事情上),理性的经典概念就不再能很好地描述一个人该如何行事。
超级智能人工智能还有很长的路要走。在过去几年里,对视觉和语言的模型开发已经创造出了用于解释图像和文本的重要的商业新技术,而人类仍然是我们在制造思考机器时要参考的最好例子,所以我认为开发良好的人类模型将是下一个研究领域。
评论赠书:你认为或者你期待人工智能下一个发展方向是什么?我们将会选3位留言质量较高的用户,免费赠送《AI的25种可能》。(互动平台:“第一财经资讯”微信公众号 )