我工作的人脸识别项目。 训练数据库,并呼吁EigenObjectRecognizer后,结果与代码运行无法识别label.When黑色图像,它看起来像下面http://www.mediafire.com/view/?ewns4iqvd51adsc 。又如图中所示的检测到并应该被识别并在图像框中提取的面部是完全的黑色。 而对于识别输入图像是完全一样的一个数据库被训练with.So为什么它不停地给未知的或无法识别的结果。 代码看起来的一部分
从装载作为训练集图片
public FaceRecognizer()
{
InitializeComponent();
//Load faces from the dataset
try
{
ContTrain = ContTrain + 1;
//Load previous trained and labels for each image from the database Here
string NameLabelsinfo = File.ReadAllText(Application.StartupPath +
"/TrainedFaces/TrainedNameLables.txt");
string[] NameLabels = NameLabelsinfo.Split('%');
NumNameLabels = Convert.ToInt16(NameLabels[0]);
string IDLabelsinfo = File.ReadAllText(Application.StartupPath +
"/TrainedFaces/TrainedNameLables.txt");
string[] IDLables = IDLabelsinfo.Split('%');
NumIDLabels = Convert.ToInt16(IDLables[0]);
if (NumNameLabels == NumIDLabels)
{
ContTrain = NumNameLabels;
string LoadFaces;
// Converting the master image to a bitmap
for (int tf = 1; tf < NumNameLabels + 1; tf++)
{
LoadFaces = String.Format("face{0}.bmp", tf);
trainingImages.Add(new Image<Gray, byte>(String.Format("
{0}/TrainedFaces/{1}", Application.StartupPath, LoadFaces)));
IDLabless.Add(IDLables[tf]);
NameLabless.Add(NameLabels[tf]);
}
}
}
catch (Exception e)
{
//Returns the following message if nothing saved in the training set
MessageBox.Show("Nothing in binary database, please add at least a
face(Simply train the prototype with the Add Face Button).", "Triained
faces load",MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
}
}
面部识别方法看起来像
private void RecognizeFaces()
{
//detect faces from the gray-scale image and store into an array of type
// 'var',i.e 'MCvAvgComp[]'
Image<Gray, byte> grayframe = GetGrayframe();
stringOutput.Add("");
//Assign user-defined Values to parameter variables:
MinNeighbors = int.Parse(comboBoxMinNeigh.Text); // the 3rd parameter
WindowsSize = int.Parse(textBoxWinSiz.Text); // the 5th parameter
ScaleIncreaseRate = Double.Parse(comboBoxScIncRte.Text); //the 2nd
//parameter
//Detect faces from an image and save it to var i.t MCvAcgComp[][]
var faces = grayframe.DetectHaarCascade(haar, ScaleIncreaseRate,
MinNeighbors,
HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
new Size(WindowsSize, WindowsSize))[0];
if (faces.Length > 0 && trainingImages.ToArray().Length != 0)
{
Bitmap ExtractedFace; //empty
ExtFaces = new Image<Gray, byte>[faces.Length];
faceNo = 0;
foreach (var face in faces)
{
// ImageFrame.Draw(face.rect, new Bgr(Color.Green), 3);
//set the size of the empty box(ExtractedFace) which will later
//contain the detected face
ExtractedFace = new Bitmap(face.rect.Width, face.rect.Height);
ExtFaces[faceNo] = new Image<Gray, byte>(ExtractedFace);
ExtFaces[faceNo] = ExtFaces[faceNo].Resize(100, 100,
Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
//TermCriteria for face recognition with numbers of trained images
// like maxIteration
MCvTermCriteria termCrit = new MCvTermCriteria(ContTrain, 0.001);
//Eigen face recognizer
EigenObjectRecognizer recognizer = new EigenObjectRecognizer(
trainingImages.ToArray(),
NameLabless.ToArray(),
700,
ref termCrit);
stringOutput[faceNo] = recognizer.Recognize(ExtFaces[faceNo]);
stringOutput.Add("");
faceNo++;
}
pbExtractedFaces.Image = ExtFaces[0].ToBitmap(); //draw the face detected
// in the 0th (gray) channel with blue color
if (stringOutput[0] == "")
{
label1.Text = "Unknown";
label9.Text = "";
}
//Draw the label for each face detected and recognized
else
{
//string[] label = stringOutput[faceNo].Split(',');
label1.Text = "Known";
// for (int i = 0; i < 2; i++)
//{
label9.Text = stringOutput[0];
//label7.Text = label[1];
//}
}
}
if (faceNo == 0)
{
MessageBox.Show("No face detected");
}
else
{
btnNextRec.Enabled = true;
btnPreviousRec.Enabled = true;
}
}
训练集是检测到面部的培训如下
private void saveFaceToDB_Click(object sender, EventArgs e)
{
abd = (Bitmap) pbExtractedFaces.Image;
TrainedFaces = new Image<Gray, byte>(abd);
trainingImages.Add(TrainedFaces);
NameLabless.Add(StudentName.Text);
IDLabless.Add(StudentID.Text);
//Write the number of trained faces in a file text for further load
File.WriteAllText(Application.StartupPath + "/TrainedFaces
/TrainedNameLables.txt", trainingImages.ToArray().Length + "%");
File.WriteAllText(Application.StartupPath + "/TrainedFaces
/TrainedIDLables.txt", trainingImages.ToArray().Length + "%");
//Write the labels of trained faces in a file text for further load
for (int i = 1; i < trainingImages.ToArray().Length + 1; i++)
{
trainingImages.ToArray()[i - 1].Save(String.Format("{0}/TrainedFaces
/face{1}.bmp", Application.StartupPath, i));
File.AppendAllText(Application.StartupPath + "/TrainedFaces
/TrainedIDLables.txt", NameLabless.ToArray()[i - 1] + "%");
File.AppendAllText(Application.StartupPath + "/TrainedFaces
/TrainedNameLables.txt", IDLabless.ToArray()[i - 1] + "%");
}
MessageBox.Show(StudentName.Text + "´s face detected and added :)", "Training
OK", MessageBoxButtons.OK, MessageBoxIcon.Information);
}
谢谢