我有tensorflow物体检测API本地工作的一个小的工作示例。 一切看起来都很好。 我的目标是用自己的脚本在谷歌机器学习引擎,我已经在过去广泛使用运行。 我下面这些文档 。
声明一些相关变量
declare PROJECT=$(gcloud config list project --format "value(core.project)")
declare BUCKET="gs://${PROJECT}-ml"
declare MODEL_NAME="DeepMeerkatDetection"
declare FOLDER="${BUCKET}/${MODEL_NAME}"
declare JOB_ID="${MODEL_NAME}_$(date +%Y%m%d_%H%M%S)"
declare TRAIN_DIR="${FOLDER}/${JOB_ID}"
declare EVAL_DIR="${BUCKET}/${MODEL_NAME}/${JOB_ID}_eval"
declare PIPELINE_CONFIG_PATH="${FOLDER}/faster_rcnn_inception_resnet_v2_atrous_coco_cloud.config"
declare PIPELINE_YAML="/Users/Ben/Documents/DeepMeerkat/training/Detection/cloud.yml"
我YAML看起来像
trainingInput:
runtimeVersion: "1.0"
scaleTier: CUSTOM
masterType: standard_gpu
workerCount: 5
workerType: standard_gpu
parameterServerCount: 3
parameterServerType: standard
相关的路径在配置,如设置
fine_tune_checkpoint: "gs://api-project-773889352370-ml/DeepMeerkatDetection/checkpoint/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017/model.ckpt"
我已经打包的对象检测和使用超薄setup.py
运行
gcloud ml-engine jobs submit training "${JOB_ID}_train" \
--job-dir=${TRAIN_DIR} \
--packages dist/object_detection-0.1.tar.gz,slim/dist/slim-0.1.tar.gz \
--module-name object_detection.train \
--region us-central1 \
--config ${PIPELINE_YAML} \
-- \
--train_dir=${TRAIN_DIR} \
--pipeline_config_path= ${PIPELINE_CONFIG_PATH}
产生一个tensorflow(进口?)错误。 它有点神秘
insertId: "1inuq6gg27fxnkc"
logName: "projects/api-project-773889352370/logs/ml.googleapis.com%2FDeepMeerkatDetection_20171017_141321_train"
receiveTimestamp: "2017-10-17T21:38:34.435293164Z"
resource: {…}
severity: "ERROR"
textPayload: "The replica ps 0 exited with a non-zero status of 1. Termination reason: Error.
Traceback (most recent call last):
File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/root/.local/lib/python2.7/site-packages/object_detection/train.py", line 198, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/root/.local/lib/python2.7/site-packages/object_detection/train.py", line 145, in main
model_config, train_config, input_config = get_configs_from_multiple_files()
File "/root/.local/lib/python2.7/site-packages/object_detection/train.py", line 127, in get_configs_from_multiple_files
text_format.Merge(f.read(), train_config)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/lib/io/file_io.py", line 112, in read
return pywrap_tensorflow.ReadFromStream(self._read_buf, length, status)
File "/usr/lib/python2.7/contextlib.py", line 24, in __exit__
self.gen.next()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
FailedPreconditionError: .
我已经看到了在其他此错误的问题涉及到预测的机器学习引擎,可能提示这个错误(?)不直接与对象相关的检测代码,但感觉像其没有被正确包装,缺少的依赖? 我已经更新了我gcloud到最新版本。
Bens-MacBook-Pro:research ben$ gcloud --version
Google Cloud SDK 175.0.0
bq 2.0.27
core 2017.10.09
gcloud
gsutil 4.27
很难看出它与此相关的问题就在这里
FailedPreconditionError运行有自己的模型TF目标检测API时
为什么代码需要在云中初始化的不同?
更新#1。
好奇的一点是,eval.py正常工作,所以它不能是配置文件,或任何train.py和eval.py共享路径。 Eval.py耐心地坐着要创建的模型检查站等待。
另一个想法可能是,检查点莫名其妙地被上传过程中被损坏。 我们可以测试从头这个旁路和培训。
在的.config
from_detection_checkpoint: false
这产生了相同的前提错误,所以它不可能是模型。