从数据框中谷歌或工具的限制(Google OR Tools constraints from Dat

2019-10-29 23:46发布

我想建立一个谷歌或工具模型使用linear_solverCBC_MIXED_INTEGER_PROGRAMMING 。 继谷歌教程中我学会了热建的约束,但我有一个问题... 是有必要手工编写每一个约束? 我的意思是,我有以下的数据帧df_constraint含有以下形式的约束系数ax+by<=c

+---+---+---+
| A | B | C |
+---+---+---+
| 1 | 5 | 7 |
| 2 | 9 | 3 |
| 3 | 0 | 4 |
+---+---+---+

该表可以转化成以下约束上

# 1x+5y<=7
constraint1 = solver.Constraint(-solver.infinity(), 7)
constraint1.SetCoefficient(x, 1)
constraint1.SetCoefficient(y, 5)

# 2x+9y<=3
constraint2 = solver.Constraint(-solver.infinity(), 3)
constraint2.SetCoefficient(x, 2)
constraint2.SetCoefficient(y, 9)

# 3x<=4
constraint3 = solver.Constraint(-solver.infinity(), 4)
constraint3.SetCoefficient(x, 3)

而不是每行写的,我想是这样的:

for index, row in df.iterrows():
    constraint = solver.Constraint(-solver.infinity(), row['C'])
    constraint.SetCoefficient(x, row['A'])
    constraint.SetCoefficient(y, row['B'])

我的片断将无法正常工作,因为每个约束必须有一个不同的名称(如constraint1constraint2 ,...)。

Answer 1:

这样做,解决您的问题?

 df_constraints = pd.DataFrame({
    'A': pd.Series([1, 2, 3]),
    'B': pd.Series([5, 9, 0]),
    'C': pd.Series([7, 3, 4]),
    })
for row in df_constraints.itertuples():
    #print("row {}".format(row))
    #print("A {}".format(row[0]))
    #print("B {}".format(row[1]))
    #print("C {}".format(row[2]))
    constraint = solver.Constraint(-solver.infinity(), row[2])
    constraint.SetCoefficient(x, row[0])
    constraint.SetCoefficient(y, row[1])


Answer 2:

事实上,OR-工具并不要求每个约束有一个唯一的名称。 但无论如何下面给他们唯一的名称。 正如上面提到的,如果你需要存储的限制,可以在阵列中做到如下。 在这里,我采用了比较常见的符号(A为约束系数,B是约束右手边,C是客观系数)。 但它会适应你的熊猫设置。

from ortools.linear_solver import pywraplp # adapted from one of the examples

inf = float("inf")

AB = [
    [1, 0, 1], # x <= 1
    [0, 1, 2], # y <= 2
    [1, 1, 2], # x + y <= 2
    [-1, -1, 0] # x + y >= 0
]
c = [3, 1]

def main():
    solver = pywraplp.Solver('simple_lp_program',
                             pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
    x = solver.NumVar(-inf, inf, 'x') # no UB or LB on x, y
    y = solver.NumVar(-inf, inf, 'y')

    cts = []
    for i, (*a, b) in enumerate(AB):
        ct = solver.Constraint(-inf, b, 'ct' + str(i))
        ct.SetCoefficient(x, a[0])
        ct.SetCoefficient(y, a[1])
        cts.append(ct)

    print('Number of constraints =', solver.NumConstraints())
    objective = solver.Objective()
    objective.SetCoefficient(x, c[0])
    objective.SetCoefficient(y, c[1])
    objective.SetMaximization()
    solver.Solve()
    print('Solution:')
    print('Objective value =', objective.Value())
    print('x =', x.solution_value())
    print('y =', y.solution_value())

if __name__ == '__main__':
    main()


文章来源: Google OR Tools constraints from DataFrame