该数据是在下面的链接: http://www.fdic.gov/bank/individual/failed/banklist.html
我想仅收在2017年我怎么能做到这一点的大熊猫银行?
failed_banks= pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')
failed_banks[0]
我应该怎么做之后的几行代码来提取所期望的结果?
该数据是在下面的链接: http://www.fdic.gov/bank/individual/failed/banklist.html
我想仅收在2017年我怎么能做到这一点的大熊猫银行?
failed_banks= pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')
failed_banks[0]
我应该怎么做之后的几行代码来提取所期望的结果?
理想情况下,你会使用
# assuming pandas successfully parsed this column as datetime object
# and pandas version >= 0.16
failed_banks= pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')[0]
failed_banks = failed_banks[failed_banks['Closing Date'].dt.year == 2017]
但大熊猫不能正确解析Closing Date
为Date对象,所以我们需要分析它自己:
failed_banks = pd.read_html('http://www.fdic.gov/bank/individual/failed/banklist.html')[0]
def parse_date_strings(date_str):
return int(date_str.split(', ')[-1]) == 2017
failed_banks = failed_banks[failed_banks['Closing Date'].apply(parse_date_strings)]
像这样的东西应该工作
提取结束的一年。
# using pd.to_datetime
closing_year = pd.to_datetime(failed_banks[0]['Updated Date']).apply(lambda x: x.year)
# or by splitting the line
closing_year = failed_banks[0]['Updated Date'].apply(lambda x: x.split(', ')[1])
和选择。
failed_banks[0][closing_year=='2017']