Memory leak when using package XML on Windows

2019-01-18 05:15发布

问题:

Having read Memory leaks parsing XML in r (including linked posts) and this post on R Help and given that some time has passed again, I still think this is an unresolved issue that deserves attention as the XML package is widely used throughout the R universe.

Thus please consider this as a follow up post and/or reference with a hopefully informative yet concise illustration of the problem.

Issue

Parsing XML/HTML documents in a way that they can be searched with XPath afterwards requires the internal use of C pointers (AFAIU). And it seems that at least on MS Windows (I'm running on Windows 8.1, 64 Bit) these references are not properly recognized by the garbage collector. Thus consumed memory is not properly released which leads to a freeze of an R process at some point.

Central findings so far

To me it seems that XML:free and/or gc does/do not recognize all memory involved when parsing XML/HTML docs via xmlParse or htmlParse and subsequently processing them with xpathApply or the like:

The reported memory usage of the OS task (Rterm.exe) is adding up significantly fast while the reported memory of the R process as "seen from within R" (function memory.size) increases moderately (in comparison, that is). See list elements mem_r, mem_os and ratio before and after a substantial parsing cycle below.

All in all and throwing in everything that has been recommended (free, rm and gc), memory usage still always increases when xmlParse and the like are called. It's just a question of how much. So IMHO there must still be something that's not working correctly.


Illustration

I borrowed the profiling code from the Duncan's Omegahat git repository.

Some preparations:

Sys.setenv("LANGUAGE"="en")   
require("compiler")
require("XML")

> sessionInfo()
R version 3.1.0 (2014-04-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=German_Germany.1252  LC_CTYPE=German_Germany.1252   
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.1252    

attached base packages:
[1] compiler  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] XML_3.98-1.1

Functions we need:

getTaskMemoryByPid <- cmpfun(function(
    pid=Sys.getpid()
) {
    cmd <- sprintf("tasklist /FI \"pid eq %s\" /FO csv", pid)
    mem <- read.csv(text=shell(cmd, intern = TRUE), stringsAsFactors=FALSE)[,5]
    mem <- as.numeric(gsub("\\.|\\s|K", "", mem))/1000
    mem
}, options=list(suppressAll=TRUE))  

memoryLeak <- cmpfun(function(
    x=system.file("exampleData", "mtcars.xml", package="XML"),
    n=10000,
    use_text=FALSE,
    xpath=FALSE,
    free_doc=FALSE,
    clean_up=FALSE,
    detailed=FALSE
) {
    if(use_text) {
        x <- readLines(x)
    }
    ## Before //
    mem_os  <- getTaskMemoryByPid()
    mem_r   <- memory.size()
    prof_1  <- memory.profile()
    mem_before <- list(mem_r=mem_r,
        mem_os=mem_os, ratio=mem_os/mem_r)

    ## Per run //
    mem_perrun <- lapply(1:n, function(ii) {
        doc <- xmlParse(x, asText=use_text)
        if (xpath) {
            res <- xpathApply(doc=doc, path="/blah", fun=xmlValue)
            rm(res)
        }
        if (free_doc) {
            free(doc)
        }
        rm(doc)
        out <- NULL
        if (detailed) {
            out <- list(
                profile=memory.profile(),
                size=memory.size()
            )
        } 
        out
    })
    has_perrun <- any(sapply(mem_perrun, length) > 0)
    if (!has_perrun) {
        mem_perrun <- NULL
    } 

    ## Garbage collect //
    mem_gc <- NULL
    if(clean_up) {
        gc()
        tmp <- gc()
        mem_gc <- list(gc_mb=tmp["Ncells", "(Mb)"])
    }

    ## After //
    mem_os  <- getTaskMemoryByPid()
    mem_r   <- memory.size()
    prof_2  <- memory.profile()
    mem_after <- list(mem_r=mem_r,
        mem_os=mem_os, ratio=mem_os/mem_r)
    list(
        before=mem_before, 
        perrun=mem_perrun, 
        gc=mem_gc, 
        after=mem_after, 
        comparison_r=data.frame(
            before=prof_1, 
            after=prof_2, 
            increase=round((prof_2/prof_1)-1, 4)
        ),
        increase_r=(mem_after$mem_r/mem_before$mem_r)-1,
        increase_os=(mem_after$mem_os/mem_before$mem_os)-1
    )
}, options=list(suppressAll=TRUE))  

Results

Scenario 1

Quick facts: garbage collection enabled, XML doc is parsed n times but not searched via xpathApply

Notice the ratios of OS memory vs. R memory:

Before: 1.364832

After: 1.322702

res <- memoryLeak(clean_up=TRUE, n=50000)
save(res, file=file.path(tempdir(), "memory-profile-1.rdata"))

> res
$before
$before$mem_r
[1] 37.42

$before$mem_os
[1] 51.072

$before$ratio
[1] 1.364832


$perrun
NULL

$gc
$gc$gc_mb
[1] 45


$after
$after$mem_r
[1] 63.21

$after$mem_os
[1] 83.608

$after$ratio
[1] 1.322702


$comparison_r
            before  after increase
NULL             1      1   0.0000
symbol        7387   7392   0.0007
pairlist    190383 390633   1.0518
closure       5077  55085   9.8499
environment   1032  51032  48.4496
promise       5226 105226  19.1351
language     54675  54791   0.0021
special         44     44   0.0000
builtin        648    648   0.0000
char          8746   8763   0.0019
logical       9081   9084   0.0003
integer      22804  22807   0.0001
double        2773   2783   0.0036
complex          1      1   0.0000
character    44522  94569   1.1241
...              0      0      NaN
any              0      0      NaN
list         19946  19951   0.0003
expression       1      1   0.0000
bytecode     16049  16050   0.0001
externalptr   1487   1487   0.0000
weakref        391    391   0.0000
raw            392    392   0.0000
S4            1392   1392   0.0000

$increase_r
[1] 0.6892036

$increase_os
[1] 0.6370614

Scenario 2

Quick facts: garbage collection enabled, free is explicitly called, XML doc is parsed n times but not searched via xpathApply.

Notice the ratios of OS memory vs. R memory:

Before: 1.315249

After: 1.222143

res <- memoryLeak(clean_up=TRUE, free_doc=TRUE, n=50000)
save(res, file=file.path(tempdir(), "memory-profile-2.rdata"))
> res

$before    
$before$mem_r
[1] 63.48

$before$mem_os
[1] 83.492

$before$ratio
[1] 1.315249


$perrun
NULL

$gc
$gc$gc_mb
[1] 69.3


$after
$after$mem_r
[1] 95.92

$after$mem_os
[1] 117.228

$after$ratio
[1] 1.222143


$comparison_r
            before  after increase
NULL             1      1   0.0000
symbol        7454   7454   0.0000
pairlist    392455 592466   0.5096
closure      55104 105104   0.9074
environment  51032 101032   0.9798
promise     105226 205226   0.9503
language     55592  55592   0.0000
special         44     44   0.0000
builtin        648    648   0.0000
char          8847   8848   0.0001
logical       9141   9141   0.0000
integer      23109  23111   0.0001
double        2802   2807   0.0018
complex          1      1   0.0000
character    94775 144781   0.5276
...              0      0      NaN
any              0      0      NaN
list         20174  20177   0.0001
expression       1      1   0.0000
bytecode     16265  16265   0.0000
externalptr   1488   1487  -0.0007
weakref        392    391  -0.0026
raw            393    392  -0.0025
S4            1392   1392   0.0000

$increase_r
[1] 0.5110271

$increase_os
[1] 0.4040627

Scenario 3

Quick facts: garbage collection enabled, free is explicitly called, XML doc is parsed n times and searched via xpathApply each time.

Notice the ratios of OS memory vs. R memory:

Before: 1.220429

After: 13.15629 (!)

res <- memoryLeak(clean_up=TRUE, free_doc=TRUE, xpath=TRUE, n=50000)
save(res, file=file.path(tempdir(), "memory-profile-3.rdata"))
res
$before
$before$mem_r
[1] 95.94

$before$mem_os
[1] 117.088

$before$ratio
[1] 1.220429


$perrun
NULL

$gc
$gc$gc_mb
[1] 93.4


$after
$after$mem_r
[1] 124.64

$after$mem_os
[1] 1639.8

$after$ratio
[1] 13.15629


$comparison_r
            before  after increase
NULL             1      1   0.0000
symbol        7454   7460   0.0008
pairlist    592458 793042   0.3386
closure     105104 155110   0.4758
environment 101032 151032   0.4949
promise     205226 305226   0.4873
language     55592  55882   0.0052
special         44     44   0.0000
builtin        648    648   0.0000
char          8847   8867   0.0023
logical       9142   9162   0.0022
integer      23109  23112   0.0001
double        2802   2832   0.0107
complex          1      1   0.0000
character   144775 194819   0.3457
...              0      0      NaN
any              0      0      NaN
list         20174  20177   0.0001
expression       1      1   0.0000
bytecode     16265  16265   0.0000
externalptr   1488   1487  -0.0007
weakref        392    391  -0.0026
raw            393    392  -0.0025
S4            1392   1392   0.0000

$increase_r
[1] 0.2991453

$increase_os
[1] 13.00485

I also tried different versions. Well, I tried to try ;-)

From source, from omegahat.org

FYI: latest Rtools 3.1 is installed and included in the Windows PATH (e.g. installing stringr form the source code worked just fine).

> install.packages("XML", repos="http://www.omegahat.org/R", type="source")
trying URL 'http://www.omegahat.org/R/src/contrib/XML_3.98-1.tar.gz'
Content type 'application/x-gzip' length 1543387 bytes (1.5 Mb)
opened URL
downloaded 1.5 Mb

* installing *source* package 'XML' ...
Please define LIB_XML (and LIB_ZLIB, LIB_ICONV)
Warning: running command 'sh ./configure.win' had status 1
ERROR: configuration failed for package 'XML'
* removing 'R:/home/apps/lsqmapps/apps/r/R-3.1.0/library/XML'
* restoring previous 'R:/home/apps/lsqmapps/apps/r/R-3.1.0/library/XML'

The downloaded source packages are in
    'C:\Users\rappster_admin\AppData\Local\Temp\RtmpQFZ2Ck\downloaded_packages'
Warning messages:
1: running command '"R:/home/apps/lsqmapps/apps/r/R-3.1.0/bin/x64/R" CMD INSTALL -l "R:\home\apps\lsqmapps\apps\r\R-3.1.0\library" C:\Users\RAPPST~1\AppData\Local\Temp\RtmpQFZ2Ck/downloaded_packages/XML_3.98-1.tar.gz' had status 1 
2: In install.packages("XML", repos = "http://www.omegahat.org/R",  :
  installation of package 'XML' had non-zero exit status

Github

I did not follow the recommendations in the README on the github repo as it points to this directory that only contains a tar.gz of version 3.94-0 (while we're at 3.98-1.1 on CRAN).

Even though it is stated that the gihub repo is not in a standard R package structure, I tried it anyway with install_github - and failed ;-)

require("devtools")
> install_github(repo="XML", username="omegahat")
Installing github repo XML/master from omegahat
Downloading master.zip from https://github.com/omegahat/XML/archive/master.zip
Installing package from C:\Users\RAPPST~1\AppData\Local\Temp\RtmpQFZ2Ck/master.zip
Installing XML
"R:/home/apps/lsqmapps/apps/r/R-3.1.0/bin/x64/R" --vanilla CMD INSTALL  \
  "C:\Users\rappster_admin\AppData\Local\Temp\RtmpQFZ2Ck\devtools15c82d7c2b4c\XML-master"  \
  --library="R:/home/apps/lsqmapps/apps/r/R-3.1.0/library" --with-keep.source  \
  --install-tests 

* installing *source* package 'XML' ...
Please define LIB_XML (and LIB_ZLIB, LIB_ICONV)
Warning: running command 'sh ./configure.win' had status 1
ERROR: configuration failed for package 'XML'
* removing 'R:/home/apps/lsqmapps/apps/r/R-3.1.0/library/XML'
* restoring previous 'R:/home/apps/lsqmapps/apps/r/R-3.1.0/library/XML'
Error: Command failed (1)

回答1:

Whilst it is still in its infancy (only a couple of months old!), and has a few quirks, Hadley Wickham has written a library for XML parsing, xml2, that can be found on Github at https://github.com/hadley/xml2. It is restricted to reading rather than writing XML, but for parsing XML I've been experimenting and it looks like it will do the job, without the memory leaks of the xml package! It provides functions including:

  • read_xml() to read an XML file
  • xml_children() to get the child nodes of a node
  • xml_text() to get the text within a tag
  • xml_attrs() to get a character vector of the attributes and values of a node, that can be cast to a named list with as.list()

Note that you still need to ensure that you rm() the XML node objects after you're done with them, and force a garbage collection with gc(), but the memory then does actually get released to the O/S (Disclaimer: Only tested on Windows 7 but this seems to be the most 'memory leaky' platform anyway).

Hope this helps someone!



回答2:

Following Matthew Wise's answer above for using xml2, I found the function that really releases memory is xml_remove() followed by gc(), not rm().



回答3:

Nothing really happened since I posted the question, so I thought I'd try to raise attention again.

Here's a slightly updated version of my investigations

Preliminaries

require("rvest")
require("XML")

Functions

getTaskMemoryByPid <- function(
  pid = Sys.getpid()
) {
  cmd <- sprintf("tasklist /FI \"pid eq %s\" /FO csv", pid)
  mem <- read.csv(text=shell(cmd, intern = TRUE), stringsAsFactors=FALSE)[,5]
  mem <- as.numeric(gsub("\\.|\\s|K", "", mem))/1000
  mem
}  

getCurrentMemoryStatus <- function() {
  mem_os  <- getTaskMemoryByPid()
  mem_r   <- memory.size()
  prof_1  <- memory.profile()
  list(r = mem_r, os = mem_os, ratio = mem_os/mem_r)
}

memoryLeak <- function(
  x = system.file("exampleData", "mtcars.xml", package="XML"),
  n = 10000,
  use_text = FALSE,
  xpath = FALSE,
  free_doc = FALSE,
  clean_up = FALSE,
  detailed = FALSE,
  use_rvest = FALSE,
  user_agent = httr::user_agent("Mozilla/5.0")
) {
  if(use_text) {
    x <- readLines(x)
  }
  ## Before //
  prof_1  <- memory.profile()
  mem_before <- getCurrentMemoryStatus()

  ## Per run //
  mem_perrun <- lapply(1:n, function(ii) {
    doc <- if (!use_rvest) {
      xmlParse(x, asText = use_text)
    } else {
      if (file.exists(x)) {
      ## From disk //        
        rvest::html(x)  
      } else {
      ## From web //
        rvest::html_session(x, user_agent)  
      }
    }
    if (xpath) {
      res <- xpathApply(doc = doc, path = "/blah", fun = xmlValue)
      rm(res)
    }
    if (free_doc) {
      free(doc)
    }
    rm(doc)
    out <- NULL
    if (detailed) {
      out <- list(
        profile = memory.profile(),
        size = memory.size()
      )
    } 
    out
  })
  has_perrun <- any(sapply(mem_perrun, length) > 0)
  if (!has_perrun) {
    mem_perrun <- NULL
  } 

  ## Garbage collect //
  mem_gc <- NULL
  if(clean_up) {
    gc()
    tmp <- gc()
    mem_gc <- list(gc_mb = tmp["Ncells", "(Mb)"])
  }

  ## After //
  prof_2  <- memory.profile()
  mem_after <- getCurrentMemoryStatus()

  ## Return value //
  if (detailed) {
    list(
      before = mem_before, 
      perrun = mem_perrun, 
      gc = mem_gc, 
      after = mem_after, 
      comparison_r = data.frame(
        before = prof_1, 
        after = prof_2, 
        increase = round((prof_2/prof_1)-1, 4)
      ),
      increase_r = (mem_after$r/mem_before$r)-1,
      increase_os = (mem_after$os/mem_before$os)-1
    )
  } else {
    list(
      before_after = data.frame(
        r = c(mem_before$r, mem_after$r),
        os = c(mem_before$os, mem_after$os)
      ),
      increase_r = (mem_after$r/mem_before$r)-1,
      increase_os = (mem_after$os/mem_before$os)-1
    )
  }
}

Memory status before anything has ever been requested

getCurrentMemoryStatus()

Generate additional offline example content

s <- html_session("http://had.co.nz/")
tmp <- capture.output(httr::content(s$response))
write(tmp, file = "hadley.html")
# html("hadley.html")

s <- html_session(
  "http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=ssd",
  httr::user_agent("Mozilla/5.0"))
tmp <- capture.output(httr::content(s$response))
write(tmp, file = "amazon.html")
# html("amazon.html")

getCurrentMemoryStatus()

Profiling

################
## Mtcars.xml ##
################

res <- memoryLeak(n = 50000, detailed = FALSE)
fpath <- file.path(tempdir(), "memory-profile-1.1.rdata")
save(res, file = fpath)

res <- memoryLeak(n = 50000, clean_up = TRUE, detailed = FALSE)
fpath <- file.path(tempdir(), "memory-profile-1.2.rdata")
save(res, file = fpath)

res <- memoryLeak(n = 50000, clean_up = TRUE, free_doc = TRUE, detailed = FALSE)
fpath <- file.path(tempdir(), "memory-profile-1.3.rdata")
save(res, file = fpath)

###################
## www.had.co.nz ##
###################

## Offline //
res <- memoryLeak(x = "hadley.html", n = 50000, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-2.1.rdata")
save(res, file = fpath)

res <- memoryLeak(x = "hadley.html", n = 50000, clean_up = TRUE, 
  detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-2.2.rdata")
save(res, file = fpath)

res <- memoryLeak(x = "hadley.html", n = 50000, clean_up = TRUE, 
    free_doc = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-2.3.rdata")
save(res, file = fpath)

## Online (PLEASE USE "POLITE" VALUE FOR `n`!!!) //
.url <- "http://had.co.nz/"
res <- memoryLeak(x = .url, n = 50, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-3.1.rdata")
save(res, file = fpath)

res <- memoryLeak(x = .url, n = 50, clean_up = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-3.2.rdata")
save(res, file = fpath)

res <- memoryLeak(x = .url, n = 50, clean_up = TRUE, 
    free_doc = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-3.3.rdata")
save(res, file = fpath)

####################
## www.amazon.com ##
####################

## Offline //
res <- memoryLeak(x = "amazon.html", n = 50000, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.1.rdata")
save(res, file = fpath)

res <- memoryLeak(x = "amazon.html", n = 50000, clean_up = TRUE, 
  detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.2.rdata")
save(res, file = fpath)

res <- memoryLeak(x = "amazon.html", n = 50000, clean_up = TRUE, 
    free_doc = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.3.rdata")
save(res, file = fpath)

## Online (PLEASE USE "POLITE" VALUE FOR `n`!!!) //
.url <- "http://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=ssd"
res <- memoryLeak(x = .url, n = 50, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.1.rdata")
save(res, file = fpath)

res <- memoryLeak(x = .url, n = 50, clean_up = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.2.rdata")
save(res, file = fpath)

res <- memoryLeak(x = .url, n = 50, clean_up = TRUE, 
    free_doc = TRUE, detailed = FALSE, use_rvest = TRUE)
fpath <- file.path(tempdir(), "memory-profile-4.3.rdata")
save(res, file = fpath)