卷积 - 计算邻居元素索引的矢量化图像(Convolution - Calculating a Ne

2019-10-24 07:39发布

假设以下矩阵既用作图像并以矩阵卷积运算内核:

0 1 2  
3 4 5  
6 7 8

要计算你可以使用下面的公式邻居像素指标:

neighbourColumn = imageColumn + (maskColumn - centerMaskColumn);
neighbourRow = imageRow + (maskRow - centerMaskRow);

因此卷积的输出将是:

output1 = {0,1,3,4} x {4,5,7,8} = 58
output2 = {0,1,2,3,4,5} x {3,4,5,6,7,8} = 100 
output2 = {1,2,4,5} x {3,4,6,7} = 70
output3 = {0,1,3,4,6,7} x {1,2,4,5,7,8} = 132
output4 = {0,1,2,3,4,5,6,7,8} x {0,1,2,3,4,5,6,7,8} = 204
output5 = {1,2,4,5,7,8} x {0,1,3,4,6,7} = 132
output6 = {3,4,6,7} x {1,2,4,5} = 70
output7 = {3,4,5,6,7,8} x {0,1,2,3,4,5} = 100
output8 = {4,5,7,8} x {0,1,3,4} = 58

因此,输出矩阵将是:

58  100 70
132 204 132
70  100 58

现在假设该矩阵被平坦化,得到以下矢量:

0 1 2 3 4 5 6 7 8

该载体现在作为一个图像,并且在该输出中应该是一个向量卷积运算内核:

58 100 70 132 204 132 70 100 58

下面给出你怎么计算,使得它与矩阵中的同一邻居元素对应的矢量邻居元素索引的代码?

public int[] convolve(int[] image, int[] kernel)
{       
  int imageValue; 
  int kernelValue;
  int outputValue;
  int[] outputImage = new int[image.length()];

  // loop through image
  for(int i = 0; i < image.length(); i++)
  {      
    outputValue = 0;

    // loop through kernel
    for(int j = 0; j < kernel.length(); j++)
    {
      neighbour = ?;

      // discard out of bound neighbours 
      if (neighbour >= 0 && neighbour < imageSize)
      {
        imageValue = image[neighbour];
        kernelValue = kernel[j];          
        outputValue += imageValue * kernelValue;
      }
    }

    outputImage[i] = outputValue;
  }        

  return output;
}

Answer 1:

邻居指数通过由当前元素的索引和矩阵尺寸的一半之间的差值抵消原始像素指数计算。 例如,为了计算列索引:

int neighbourCol = imageCol + col - (size / 2);

我把工作演示在GitHub上 ,试图让整个卷积算法尽可能地易读:

int[] dstImage = new int[srcImage.width() * srcImage.height()];

srcImage.forEachElement((image, imageCol, imageRow) -> {
  Pixel pixel = new Pixel();
  forEachElement((filter, col, row) -> {
    int neighbourCol = imageCol + col - (size / 2);
    int neighbourRow = imageRow + row - (size / 2);
    if (srcImage.hasElementAt(neighbourCol, neighbourRow)) {
      int color = srcImage.at(neighbourCol, neighbourRow);
      int weight = filter.at(col, row);
      pixel.addWeightedColor(color, weight);
    }
  });

  dstImage[(imageRow * srcImage.width() + imageCol)] = pixel.rgb();
});


Answer 2:

当你在处理2D图像,你将有权保留对图像的一些信息,再加上普通一维像素阵列。 特别是,你至少需要的图像(和掩模)的宽度 ,以便找出1D阵列,其中索引对应于索引原始2D图像英寸 正如已经指出在他的回答拉斐尔 ,也有它们之间的转换(“虚拟”)的二维坐标和1D这样的像素阵列中的坐标一般规则:

int pixelX = ...;
int pixelY = ...;
int index = pixelX + pixelY * imageSizeX;

在此基础上,你可以做你的卷积只需在2D图像。 对于您可以访问像素的限制可以很容易地进行检查。 该循环是在图像和掩码简单的2D循环。 这一切都归结到你与二维坐标访问1D数据来看,如上所述。

下面是一个例子。 它适用索贝尔滤波器输入图像。 (还有可能是像素值一个奇怪的现象,但卷积本身和指数的计算应该是正确的)

import java.awt.Graphics2D;
import java.awt.GridLayout;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.SwingUtilities;

public class ConvolutionWithArrays1D
{
    public static void main(String[] args) throws IOException
    {
        final BufferedImage image = 
            asGrayscaleImage(ImageIO.read(new File("lena512color.png")));
        SwingUtilities.invokeLater(new Runnable()
        {
            @Override
            public void run()
            {
                createAndShowGUI(image);
            }
        });

    }

    private static void createAndShowGUI(BufferedImage image0)
    {
        JFrame f = new JFrame();
        f.getContentPane().setLayout(new GridLayout(1,2));


        f.getContentPane().add(new JLabel(new ImageIcon(image0)));

        BufferedImage image1 = compute(image0);
        f.getContentPane().add(new JLabel(new ImageIcon(image1)));


        f.pack();
        f.setLocationRelativeTo(null);
        f.setVisible(true);
    }

    private static BufferedImage asGrayscaleImage(BufferedImage image)
    {
        BufferedImage gray = new BufferedImage(
            image.getWidth(), image.getHeight(), BufferedImage.TYPE_BYTE_GRAY);
        Graphics2D g = gray.createGraphics();
        g.drawImage(image, 0, 0, null);
        g.dispose();
        return gray;
    }

    private static int[] obtainGrayscaleIntArray(BufferedImage image)
    {
        BufferedImage gray = new BufferedImage(
            image.getWidth(), image.getHeight(), BufferedImage.TYPE_BYTE_GRAY);
        Graphics2D g = gray.createGraphics();
        g.drawImage(image, 0, 0, null);
        g.dispose();
        DataBuffer dataBuffer = gray.getRaster().getDataBuffer();
        DataBufferByte dataBufferByte = (DataBufferByte)dataBuffer;
        byte data[] = dataBufferByte.getData();
        int result[] = new int[data.length];
        for (int i=0; i<data.length; i++)
        {
            result[i] = data[i];
        }
        return result;
    }

    private static BufferedImage createImageFromGrayscaleIntArray(
        int array[], int imageSizeX, int imageSizeY)
    {
        BufferedImage gray = new BufferedImage(
            imageSizeX, imageSizeY, BufferedImage.TYPE_BYTE_GRAY);
        DataBuffer dataBuffer = gray.getRaster().getDataBuffer();
        DataBufferByte dataBufferByte = (DataBufferByte)dataBuffer;
        byte data[] = dataBufferByte.getData();
        for (int i=0; i<data.length; i++)
        {
            data[i] = (byte)array[i];
        }
        return gray;
    }

    private static BufferedImage compute(BufferedImage image)
    {
        int imagePixels[] = obtainGrayscaleIntArray(image);
        int mask[] = 
        {
             1,0,-1,
             2,0,-2,
             1,0,-1,
        };
        int outputPixels[] = 
            Convolution.filter(imagePixels, image.getWidth(), mask, 3);
        return createImageFromGrayscaleIntArray(
            outputPixels, image.getWidth(), image.getHeight());

    }

}


class Convolution
{
    public static final int[] filter(
        final int[] image, int imageSizeX,
        final int[] mask, int maskSizeX)
    {
        int imageSizeY = image.length / imageSizeX;
        int maskSizeY = mask.length / maskSizeX;
        int output[] = new int[image.length];
        for (int y=0; y<imageSizeY; y++)
        {
            for (int x=0; x<imageSizeX; x++)
            {
                int outputPixelValue = 0;
                for (int my=0; my< maskSizeY; my++)
                {
                    for (int mx=0; mx< maskSizeX; mx++)
                    {
                        int neighborX = x + mx -maskSizeX / 2;
                        int neighborY = y + my -maskSizeY / 2;

                        if (neighborX >= 0 && neighborX < imageSizeX &&
                            neighborY >= 0 && neighborY < imageSizeY)
                        {
                            int imageIndex = 
                                neighborX + neighborY * imageSizeX;
                            int maskIndex = mx + my * maskSizeX;

                            int imagePixelValue = image[imageIndex];
                            int maskPixelValue = mask[maskIndex];
                            outputPixelValue += 
                                imagePixelValue * maskPixelValue;
                        }
                    }
                }
                outputPixelValue = truncate(outputPixelValue);

                int outputIndex = x + y * imageSizeX;
                output[outputIndex] = outputPixelValue;
            }
        }
        return output;
    }

    private static final int truncate(final int pixelValue)
    {
        return Math.min(255, Math.max(0, pixelValue));
    }
}    


文章来源: Convolution - Calculating a Neighbour Element Index for a Vectorised Image