我想实现从光速标记算法https://www.lri.fr/~lacas/Publications/JRTIP10.pdf 。 我试图按照在纸仔细地描述地(PGS 9-12)算法的方法,但等价阶段后的输出没有意义。
任何人有任何的想法是什么问题?
void segment(const unsigned * Xi, const unsigned& N, unsigned * ERi, unsigned *RLCi, unsigned& ner)
{
unsigned x1 = 0;
unsigned f = 0;
unsigned er = 0;
for (unsigned j = 0; j < N; ++j)
{
const unsigned x0 = Xi[j];
f = x0 ^ x1;
RLCi[er] = j;
er = er + f;
ERi[j] = er;
x1 = x0;
}
if (x1 != 0)
{
RLCi[er] = N;
}
er = er + x1;
ner = er;
}
void equivalance(const unsigned& ner, unsigned * RLCi, unsigned * EQ, unsigned * ER0, unsigned * ERA0, unsigned * ERA1, unsigned& nea, const unsigned& N = 0)
{
for (unsigned er = 1; er <= ner; er += 2)
{
int j0 = RLCi[er - 1];
int j1 = RLCi[er] - 1;
// Unnecessary given optimization and need for 4-connectivity:
// if (j0 > 0) j0 = j0 - 1;
// if (j1 < N - 1) j1 = j1 + 1;
int er0 = ER0[j0];
int er1 = ER0[j1];
if (!(er0 & 1)) er0 = er0 + 1;
if (!(er1 & 1)) er1 = er1 - 1;
if (er1 >= er0) // adjacent label
{
unsigned ea = ERA0[er0];
unsigned a = EQ[ea];
for (unsigned erk = er0 + 2; erk <= er1; ++erk)
{
unsigned eak = ERA0[erk];
unsigned ak = EQ[eak];
if (a < ak)
{
EQ[eak] = a;
}
else
{
a = ak;
EQ[ea] = a;
ea = eak;
}
}
ERA1[er] = a;
}
else
{
nea = nea + 1;
ERA1[er] = nea;
}
}
}
typedef std::vector<unsigned> value_type;
void bwlabel(const double* X, unsigned * EA, const unsigned& N, const unsigned& M)
{
unsigned nea = 0;
const unsigned size = N * M;
value_type EQ(size, 0), ER(size, 0), ERA(size, 0), A(size, 0), RLC(M * (2 * N), 0), IN(X, X + size), NER(M, 0);
// Step 1
for (int m = 0; m < M; ++m)
{
segment(&IN[0] + N * m, N, &ER[0] + N * m, &RLC[0] + m * (2 * N), NER[m]);
}
// Step 2
for (int m = 1; m < M; ++m)
{
equivalance(NER[m], &RLC[0] + m * (2 * N), &EQ[0], &ER[0] + (m - 1) * N, &ERA[0] + (m - 1) * N, &ERA[0] + m * N, nea, N);
}
// Step 3
for (int j = 0; j < size; ++j)
{
EA[j] = ERA[ER[j]];
}
// Step 4
unsigned na = 0;
for (int e = 0; e < size; ++e)
{
if (EQ[e] != e)
{
A[e] = EQ[EQ[e]];
}
else
{
na = na + 1;
A[e] = na;
}
}
// Step 5
for (int j = 0; j < size; ++j)
{
EA[j] = A[EA[j]];
}
}
IN=
1 1 0 1 1 0 0 1 1 1
0 1 1 0 1 0 0 1 1 1
1 0 1 1 1 1 1 0 1 0
1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 0 0 1 1 1
0 1 1 0 0 0 1 0 1 0
1 0 1 1 1 1 1 0 0 0
1 0 1 0 1 0 0 0 1 0
0 1 1 1 1 0 1 1 0 1
0 0 1 1 1 0 1 0 0 0
RLC=
[0]0 [1]2 [2]3 [3]5 [4]7 [5]10 [6]0 [7]0 [8]0 [9]0
[0]0 [1]0 [2]0 [3]0 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
[0]1 [1]3 [2]4 [3]5 [4]7 [5]10 [6]0 [7]0 [8]0 [9]0
[0]0 [1]0 [2]0 [3]0 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
[0]0 [1]1 [2]2 [3]7 [4]8 [5]9 [6]0 [7]0 [8]0 [9]0
[0]0 [1]0 [2]0 [3]0 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
[0]0 [1]1 [2]5 [3]7 [4]8 [5]9 [6]0 [7]0 [8]0 [9]0
[0]0 [1]0 [2]0 [3]0 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
[0]2 [1]4 [2]7 [3]10 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
[0]0 [1]0 [2]0 [3]0 [4]0 [5]0 [6]0 [7]0 [8]0 [9]0
ER=
1 1 2 3 3 4 4 5 5 5
0 1 1 2 3 4 4 5 5 5
1 2 3 3 3 3 3 4 5 6
1 2 2 2 2 3 3 4 5 6
0 0 1 1 2 2 2 3 3 3
0 1 1 2 2 2 3 4 5 6
1 2 3 3 3 3 3 4 4 4
1 2 3 4 5 6 6 6 7 8
0 1 1 1 1 2 3 3 4 5
0 0 1 1 1 2 3 4 4 4
ERA=
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0
0 0 0 4 0 5 0 0 0 0
0 0 0 0 0 0 0 0 0 0
EQ=
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
EA=
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1