做功能,从结构CSV d需要2门阵列(列1列2和),并从它生成的图表。
思想是找到最大值,每个阵列的分钟值,然后分解最小EPSILON和max + EPSILON之间范围在600个相等的区域,其中,EPSILON = 10 ^( - 6)
问题是,功能无法正常绘制的最低线,我认为这个问题是从阵列分钟,EPSILON,不知道比较值当。 请指教。
这里是我的代码。
void
do_plot(CSV *D, int column1, int column2) {
#define Y_REGIONS 600
#define X_REGIONS 600
#define EPSILON 0.000001
int col1=column1-1; //since indexing in C language starts from 0, to be more user friendly values increased by 1
int col2=column2-1;
double min_y = D->values[0][col1]; //min val of column
double max_y = D->values[0][col1]; //max val of column
double min_x = D->values[0][col2]; //min val of column
double max_x = D->values[0][col2]; //max val of column
int i=0,j=0,k=0; //iteration variables
double interval_x, interval_y; //region
int counter; //counts how many elements of "col1" and "column2" are in bucket
int plotval; //plotted value
double upper_bound_y[Y_REGIONS+1],lower_bound_y[Y_REGIONS+1]; //arrays for lower and upper bounds of regions in y (added extra 1 not to run out of regions)
double upper_bound_x[X_REGIONS+1],lower_bound_x[X_REGIONS+1]; //arrays for lower and upper bounds of regions in x
while (i < D->number_of_rows){
if (D->values[i][col1] > max_y){
max_y = D->values[i][col1];
}
if (D->values[i][col1] < min_y){
min_y = D->values[i][col1];
}
if (D->values[i][col2] > max_x){
max_x = D->values[i][col2];
}
if (D->values[i][col2] < min_x){
min_x = D->values[i][col2];
}
i++;
}
/* adding EPSILON val to max and min */
max_x=max_x+EPSILON;
max_y=max_y+EPSILON;
min_x=min_x-EPSILON;
min_y=min_y-EPSILON;
interval_y=(max_y-min_y)/Y_REGIONS; //breaking y axis into Y_REGIONS equal regions
interval_x=(max_x-min_x)/X_REGIONS; //breaking x axis into Y_REGIONS equal regions
/* calculating regions of y*/
upper_bound_y[0]=max_y; //upper bound of the first region in y
lower_bound_y[0]=max_y-interval_y; //lower bound of the first region in y
for (j=0; j<Y_REGIONS; j++){
upper_bound_y[j+1]=upper_bound_y[j]-interval_y;
lower_bound_y[j+1]=lower_bound_y[j]-interval_y;
}
/* calculating regions of x */
upper_bound_x[0]=min_x+interval_x; //upper bound of the first region in y
lower_bound_x[0]=min_x; //lower bound of the first region in y
for (j=0; j<X_REGIONS; j++){
upper_bound_x[j+1]=upper_bound_x[j]+interval_x;
lower_bound_x[j+1]=lower_bound_x[j]+interval_x;
}
/* plotting the graph */
for (i=0; i<Y_REGIONS; i++){
printf("\n%6.20lf--%6.20lf: ", lower_bound_y[i], upper_bound_y[i]); //plotting y axis
for (j=0; j<X_REGIONS; j++){ //x axis
counter=0; //resetting counter
while (k <= D->number_of_rows){
k++;
/* checking whether element of input lies within region and counting number of elements */
if (D->values[k][col1] < upper_bound_y[i] && D->values[k][col1] > lower_bound_y[i]){
if (D->values[k][col2] < upper_bound_x[j] && D->values[k][col2] > lower_bound_x[j] ){
counter++;
}
}
}
k=0; //resetting counter
plotval=floor(log(counter+1)/log(2)); //formula to show number of values in bucket
/* plotting x lines */
if (plotval==0){
printf(".");
}
else{
printf("%d",plotval);
}
}
}
printf("\n");
return;
}