这并不是一个bug报告 - 即使这些泄漏可能是MPL错误的结果,请解释问题提出询问他们周围的一种方式。
问题很简单:绘图数据的一大块(使用情节()或散射()),清/释放一切,垃圾收集,但仍然没有几乎所有的内存被释放。
Line # Mem usage Increment Line Contents
================================================
391 122.312 MiB 0.000 MiB @profile
392 def plot_network_scatterplot(t_sim_stop, spikes_mat, n_cells_per_area, n_cells, basedir_output, condition_idx):
393
394 # make network scatterplot
395 122.312 MiB 0.000 MiB w, h = plt.figaspect(.1/(t_sim_stop/1E3))
396 122.324 MiB 0.012 MiB fig = mpl.figure.Figure(figsize=(10*w, 10*h))
397 122.328 MiB 0.004 MiB canvas = FigureCanvas(fig)
398 122.879 MiB 0.551 MiB ax = fig.add_axes([.01, .1, .98, .8])
399 134.879 MiB 12.000 MiB edgecolor_vec = np.array([(1., 0., 0.), (0., 0., 1.)])[1-((spikes_mat[:,3]+1)/2).astype(np.int)]
400 '''pathcoll = ax.scatter(spikes_mat[:,1],
401 spikes_mat[:,0] + n_cells_per_area * (spikes_mat[:,2]-1),
402 s=.5,
403 c=spikes_mat[:,3],
404 edgecolor=edgecolor_vec)'''
405 440.098 MiB 305.219 MiB pathcoll = ax.plot(np.random.rand(10000000), np.random.rand(10000000))
406 440.098 MiB 0.000 MiB ax.set_xlim([0., t_sim_stop])
407 440.098 MiB 0.000 MiB ax.set_ylim([1, n_cells])
408 440.098 MiB 0.000 MiB plt.xlabel('Time [ms]')
409 440.098 MiB 0.000 MiB plt.ylabel('Cell ID')
410 440.098 MiB 0.000 MiB plt.suptitle('Network activity scatterplot')
411 #plt.savefig(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
412 931.898 MiB 491.801 MiB canvas.print_figure(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
413 #fig.canvas.close()
414 #pathcoll.set_offsets([])
415 #pathcoll.remove()
416 931.898 MiB 0.000 MiB ax.cla()
417 931.898 MiB 0.000 MiB ax.clear()
418 931.898 MiB 0.000 MiB fig.clf()
419 931.898 MiB 0.000 MiB fig.clear()
420 931.898 MiB 0.000 MiB plt.clf()
421 932.352 MiB 0.453 MiB plt.cla()
422 932.352 MiB 0.000 MiB plt.close(fig)
423 932.352 MiB 0.000 MiB plt.close()
424 932.352 MiB 0.000 MiB del fig
425 932.352 MiB 0.000 MiB del ax
426 932.352 MiB 0.000 MiB del pathcoll
427 932.352 MiB 0.000 MiB del edgecolor_vec
428 932.352 MiB 0.000 MiB del canvas
429 505.094 MiB -427.258 MiB gc.collect()
430 505.094 MiB 0.000 MiB plt.close('all')
431 505.094 MiB 0.000 MiB gc.collect()
我已经尝试了许多组合和全部清/释放无济于事的不同的订单。 我试着不使用显式图/帆布制作,但只是用mpl.pyplot,具有相同的结果。
有什么办法来释放此内存,并走出去与我排在122.312?
干杯!