I have a data frame (all_data
) in which I have a list of sites (1... to n) and their scores e.g.
site score
1 10
1 11
1 12
4 10
4 11
4 11
8 9
8 8
8 7
I want create a column that numbers each level of site in numerical order, like a counter. In the example, the sites (1, 4, and 8) would be have a corresponding counter from 1 to 3 in the \'number\' column:
site score number
1 10 1
1 11 1
1 12 1
4 10 2
4 11 2
4 11 2
8 9 3
8 8 3
8 7 3
I am sure this must be easily solved, but I have not found a way yet.
Try Data$number <- as.numeric(as.factor(Data$site))
On a sidenote : the difference between the solution of me and @Chase on one hand, and the one of @DWin on the other, is the ordering of the numbers. Both as.factor
and factor
will automatically sort the levels, whereas that doesn\'t happen in the solution of @DWin :
Dat <- data.frame(site = rep(c(1,8,4), each = 3), score = runif(9))
Dat$number <- as.numeric(factor(Dat$site))
Dat$sitenum <- match(Dat$site, unique(Dat$site) )
Gives
> Dat
site score number sitenum
1 1 0.7377561 1 1
2 1 0.3131139 1 1
3 1 0.7862290 1 1
4 8 0.4480387 3 2
5 8 0.3873210 3 2
6 8 0.8778102 3 2
7 4 0.6916340 2 3
8 4 0.3033787 2 3
9 4 0.6552808 2 3
Two other options:
1) Using the .GRP
function from the data.table
package:
library(data.table)
setDT(dat)[, num := .GRP, by = site]
with the example dataset from below this results in:
> dat
site score num
1: 1 0.14945795 1
2: 1 0.60035697 1
3: 1 0.94643075 1
4: 8 0.68835336 2
5: 8 0.50553372 2
6: 8 0.37293624 2
7: 4 0.33580504 3
8: 4 0.04825135 3
9: 4 0.61894754 3
10: 8 0.96144729 2
11: 8 0.65496051 2
12: 8 0.51029199 2
2) Using the group_indices
function from dplyr
:
dat$num <- group_indices(dat, site)
or when you want to work around non-standard evaluation:
library(dplyr)
dat %>%
mutate(num = group_indices_(dat, .dots = c(\'site\')))
which results in:
site score num
1 1 0.42480366 1
2 1 0.98736177 1
3 1 0.35766187 1
4 8 0.06243182 3
5 8 0.55617002 3
6 8 0.20304632 3
7 4 0.90855921 2
8 4 0.25215078 2
9 4 0.44981251 2
10 8 0.60288270 3
11 8 0.46946587 3
12 8 0.44941782 3
As can be seen, dplyr
gives a different order of the group numbers.
If you want another number every time the group changes, there are several other options:
1) with base R:
# option 1:
dat$num <- cumsum(c(TRUE, head(dat$site, -1) != tail(dat$site, -1)))
# option 2:
x <- rle(dat$site)$lengths
dat$num <- rep(seq_along(x), times=x)
2) with the data.table
package:
library(data.table)
setDT(dat)[, num := rleid(site)]
which all result in:
> dat
site score num
1 1 0.80817855 1
2 1 0.07881334 1
3 1 0.60092828 1
4 8 0.71477988 2
5 8 0.51384565 2
6 8 0.72011650 2
7 4 0.74994627 3
8 4 0.09564052 3
9 4 0.39782587 3
10 8 0.29446540 4
11 8 0.61725367 4
12 8 0.97427413 4
Used data:
dat <- data.frame(site = rep(c(1,8,4,8), each = 3), score = runif(12))
This should be fairly efficient and understandable:
Dat$sitenum <- match(Dat$site, unique(Dat$site))
You can turn site into a factor and then return the numeric or integer values of that factor:
dat <- data.frame(site = rep(c(1,4,8), each = 3), score = runif(9))
dat$number <- as.integer(factor(dat$site))
dat
site score number
1 1 0.5305773 1
2 1 0.9367732 1
3 1 0.1831554 1
4 4 0.4068128 2
5 4 0.3438962 2
6 4 0.8123883 2
7 8 0.9122846 3
8 8 0.2949260 3
9 8 0.6771526 3
Another solution using the data.table
package.
Example with the more complete datset provided by Jaap:
setDT(dat)[, number := frank(site, ties.method = \"dense\")]
dat
site score number
1: 1 0.3107920 1
2: 1 0.3640102 1
3: 1 0.1715318 1
4: 8 0.7247535 3
5: 8 0.1263025 3
6: 8 0.4657868 3
7: 4 0.6915818 2
8: 4 0.3558270 2
9: 4 0.3376173 2
10: 8 0.7934963 3
11: 8 0.9641918 3
12: 8 0.9832120 3