Input matrix to opencv kmeans clustering

2019-01-17 18:48发布

问题:

This question is specific to opencv: The kmeans example given in the opencv documentation has a 2-channel matrix - one channel for each dimension of the feature vector. But, some of the other example seem to say that it should be a one channel matrix with features along the columns with one row for each sample. Which of these is right?

if I have a 5 dimensional feature vector, what should be the input matrix that I use: This one:

cv::Mat inputSamples(numSamples, 1, CV32FC(numFeatures))

or this one:

cv::Mat inputSamples(numSamples, numFeatures, CV_32F)

回答1:

The correct answer is cv::Mat inputSamples(numSamples, numFeatures, CV_32F). The OpenCV Documentation about kmeans says:

samples – Floating-point matrix of input samples, one row per sample

So it is not a Floating-point vector of n-Dimensional floats as in the other option. Which examples suggested such a behaviour?

Here is also a small example by me that shows how kmeans can be used. It clusters the pixels of an image and displays the result:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main( int argc, char** argv )
{
  Mat src = imread( argv[1], 1 );
  Mat samples(src.rows * src.cols, 3, CV_32F);
  for( int y = 0; y < src.rows; y++ )
    for( int x = 0; x < src.cols; x++ )
      for( int z = 0; z < 3; z++)
        samples.at<float>(y + x*src.rows, z) = src.at<Vec3b>(y,x)[z];


  int clusterCount = 15;
  Mat labels;
  int attempts = 5;
  Mat centers;
  kmeans(samples, clusterCount, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10000, 0.0001), attempts, KMEANS_PP_CENTERS, centers );


  Mat new_image( src.size(), src.type() );
  for( int y = 0; y < src.rows; y++ )
    for( int x = 0; x < src.cols; x++ )
    { 
      int cluster_idx = labels.at<int>(y + x*src.rows,0);
      new_image.at<Vec3b>(y,x)[0] = centers.at<float>(cluster_idx, 0);
      new_image.at<Vec3b>(y,x)[1] = centers.at<float>(cluster_idx, 1);
      new_image.at<Vec3b>(y,x)[2] = centers.at<float>(cluster_idx, 2);
    }
  imshow( "clustered image", new_image );
  waitKey( 0 );
}


回答2:

As alternative to reshaping the input matrix manually, you can use OpenCV reshape function to achieve similar result with less code. Here is my working implementation of reducing colors count with K-Means method (in Java):

private final static int MAX_ITER = 10;
private final static int CLUSTERS = 16;

public static Mat colorMapKMeans(Mat img, int K, int maxIterations) {

    Mat m = img.reshape(1, img.rows() * img.cols());
    m.convertTo(m, CvType.CV_32F);

    Mat bestLabels = new Mat(m.rows(), 1, CvType.CV_8U);
    Mat centroids = new Mat(K, 1, CvType.CV_32F);
    Core.kmeans(m, K, bestLabels, 
                new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS, maxIterations, 1E-5),
                1, Core.KMEANS_RANDOM_CENTERS, centroids);
    List<Integer> idx = new ArrayList<>(m.rows());
    Converters.Mat_to_vector_int(bestLabels, idx);

    Mat imgMapped = new Mat(m.size(), m.type());
    for(int i = 0; i < idx.size(); i++) {
        Mat row = imgMapped.row(i);
        centroids.row(idx.get(i)).copyTo(row);
    }

    return imgMapped.reshape(3, img.rows());
}

public static void main(String[] args) {
    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    Highgui.imwrite("result.png", 
        colorMapKMeans(Highgui.imread(args[0], Highgui.CV_LOAD_IMAGE_COLOR),
            CLUSTERS, MAX_ITER));
}

OpenCV reads image into 2 dimensional, 3 channel matrix. First call to reshape - img.reshape(1, img.rows() * img.cols()); - essentially unrolls 3 channels into columns. In resulting matrix one row corresponds to one pixel of the input image, and 3 columns corresponds to RGB components.

After K-Means algorithm finished its work, and color mapping has been applied, we call reshape again - imgMapped.reshape(3, img.rows()), but now rolling columns back into channels, and reducing row numbers to the original image row number, thus getting back the original matrix format, but only with reduced colors.