I have a data frame in which values (l) are specified for Cartesian coordinates (x, y) as in the following minimal working example.
set.seed(2013)
df <- data.frame( x = rep( 0:1, each=2 ),
y = rep( 0:1, 2),
l = rnorm( 4 ))
df
# x y l
# 1 0 0 -0.09202453
# 2 0 1 0.78901912
# 3 1 0 -0.66744232
# 4 1 1 1.36061149
I want to create a raster using the raster package, but my reading of the documentation has not revealed a simple method for loading data in the form that I have it into the raster cells. I've come up with a couple ways to do it using for loops, but I suspect that there's a much more direct approach that I'm missing.
Here is one approach, via SpatialPixelsDataFrame
library(raster)
# create spatial points data frame
spg <- df
coordinates(spg) <- ~ x + y
# coerce to SpatialPixelsDataFrame
gridded(spg) <- TRUE
# coerce to raster
rasterDF <- raster(spg)
rasterDF
# class : RasterLayer
# dimensions : 2, 2, 4 (nrow, ncol, ncell)
# resolution : 1, 1 (x, y)
# extent : -0.5, 1.5, -0.5, 1.5 (xmin, xmax, ymin, ymax)
# coord. ref. : NA
# data source : in memory
# names : l
# values : -0.6674423, 1.360611 (min, max)
help('raster')
describes a number of methods to create a raster from objects of different classes.
An easier solution exists as
library(raster)
dfr <- rasterFromXYZ(df) #Convert first two columns as lon-lat and third as value
plot(dfr)
dfr
class : RasterLayer
dimensions : 2, 2, 4 (nrow, ncol, ncell)
resolution : 1, 1 (x, y)
extent : -0.5, 1.5, -0.5, 1.5 (xmin, xmax, ymin, ymax)
coord. ref. : NA
data source : in memory
names : l
values : -2.311813, 0.921186 (min, max)
Further, you may specify the CRS string. Detailed discussion is available here.