按日期分组数据帧:解决失踪时间段错误(Grouping a data frame by dates:

2019-09-30 17:21发布

我已经确定,如果不是自己创建的,困难的错误解决在几个星期前从这里StackOverflow上一个慷慨的申请人收到一些不错的代码,我可以用一些新的援助今天。

样本数据(称为对象eh下面):

    ID        2013-03-20 2013-04-09 2013-04-11 2013-04-17 2013-04-25 2013-05-15 2013-05-24 2013-05-25 2013-05-26
    5167f          0          0          0          0          0          0          0          0          0
    1214m          0          0          0          0          0          0          0          0          0
    1844f          0          0          0          0          0          0          0          0          0
    2113m          0          0          0          0          0          0          0          0          0
    2254m          0          0          0          0          0          0          0          0          0
    2721f          0          0          0          0          0          0          0          0          0
    3121f          0          0          0          0          0          0          0          0          0
    3486f          0          0          0          0          0          0          0          0          0
    3540f          0          0          0          0          0          0          0          0          0
    4175m          0          0          0          0          0          0          0          0          0

我需要能够组0s1s通过在它们各自的列日期落在时间周期(例如,每隔1,2,3,或4周)。 每当1特定日期范围(内时至少一次Period ),则1被总结为IDPeriod0 ,否则)。

我开始用1周汇总程序作为一个实例。 我的主要问题是,所产生的最终输出缺少一些总的可能1周的Periods在时间序列中"2013-03-20""2015-12-31"

在这个例子中输出通知,其中,所述行是唯一IDs和列是用于唯一Periods ,如何Periods 2,5,7,和9被丢失:

    1   3   4   6   8   10  11  12  13  14
    0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0
    0   0   0   0   0   0   0   0   0   0

下面是用于分组的原始数据帧(见样品以上数据共享)的全部例程:

    #Convert to data table from original data frame, eh
    dt <- as.data.table(eh)

    #One week summarized encounter histories
    dt_merge <- data_frame(
      # Create a column showing the beginning date
      Date1 = seq(from = ymd("2013-03-20"), to = ymd("2015-12-31"), by = "1 week")) %>%
      # Create  a column showing the end date of each period
      mutate(Date2 = lead(Date1)) %>%
      # Adjust Date1
      mutate(Date1 = if_else(Date1 == ymd("2013-03-20"), Date1, Date1 + 1)) %>%
      # Remove the last row
      drop_na(Date2) %>%
      # Create date list
      mutate(Dates = map2(Date1, Date2, function(x, y){ seq(x, y, by = "day") })) %>%
      unnest() %>%
      # Create Group ID
      mutate(RunID = group_indices_(., dots. = c("Date1", "Date2"))) %>%
      # Create Period ID
      mutate(Period = paste0(RunID)) %>%
      # Add a column showing Month
      mutate(Month = month(Dates)) %>%
      # Add a column showing Year
      mutate(Year = year(Dates)) %>%
      # Add a column showing season
      mutate(Season = case_when(
        Month %in% 3:5            ~ "Spring",
        Month %in% 6:8            ~ "Summer",
        Month %in% 9:11           ~ "Fall",
        Month %in% c(12, 1, 2)    ~ "Winter",
        TRUE                      ~ NA_character_
      )) %>%
      # Combine Season and Year
      mutate(SeasonYear = paste0(Season, Year)) %>%
      select(-Date1, -Date2, -RunID)
    dt2 <- dt %>%
      # Reshape the data frame
      gather(Date, Value, -ID) %>%
      # Convert Date to date class
      mutate(Date = ymd(Date)) %>%
      # Join dt_merge
      left_join(dt_merge, by = c("Date" = "Dates")) 
    one.week <- dt2 %>%
      group_by(ID, Period) %>%
      summarise(Value = max(Value)) %>%
      spread(Period, Value)

    #Finished product
    one.week <- as.data.frame(one.week)

    #Missing weeks 2, 5, 7, and 9...
    one.week

有人可以帮助我明白的地方我已经错了吗? 提前致谢!

-广告

Answer 1:

发生这种情况,因为这些周是从丢失eh数据。 例如,如果你看一下,使上涨2周日期:

dt_merge %>%
  filter(Period == 2)
#> # A tibble: 7 x 6
#>        Dates Period Month  Year Season SeasonYear
#>       <date>  <chr> <dbl> <dbl>  <chr>      <chr>
#> 1 2013-03-28      2     3  2013 Spring Spring2013
#> 2 2013-03-29      2     3  2013 Spring Spring2013
#> 3 2013-03-30      2     3  2013 Spring Spring2013
#> 4 2013-03-31      2     3  2013 Spring Spring2013
#> 5 2013-04-01      2     4  2013 Spring Spring2013
#> 6 2013-04-02      2     4  2013 Spring Spring2013
#> 7 2013-04-03      2     4  2013 Spring Spring2013

你可以看到,没有这些日期都在列eh ,这跳过从2013年3月20日至2013年4月9日。 由于您使用left_join创建时dt2 ,只有在日期(因此周) eh被保留。

这可以通过使用被校正complete()tidyr包来创建ID和日期的缺失组合。

dt2 <- dt %>%
  # Reshape the data frame
  gather(Date, Value, -ID) %>%
  # Convert Date to date class
  mutate(Date = ymd(Date)) %>%
  # Create missing ID/Date combinations
  complete(ID, Date = dt_merge$Dates) %>%
  # Join dt_merge
  left_join(dt_merge, by = c("Date" = "Dates"))
one.week <- dt2 %>%
  mutate(Period = as.numeric(Period)) %>%
  group_by(ID, Period) %>%
  summarise(Value = max(Value, na.rm = TRUE)) %>%
  spread(Period, Value)
one.week
#> # A tibble: 10 x 146
#> # Groups:   ID [10]
#>       ID   `1`   `2`   `3`   `4`   `5`   `6`   `7`   `8`   `9`  `10`  `11`
#>  * <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 1214m     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  2 1844f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  3 2113m     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  4 2254m     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  5 2721f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  6 3121f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  7 3486f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  8 3540f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#>  9 4175m     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#> 10 5167f     0  -Inf     0     0  -Inf     0  -Inf     0  -Inf     0  -Inf
#> # ... with 134 more variables: `12` <dbl>, `13` <dbl>, `14` <dbl>,
#> #   `15` <dbl>, `16` <dbl>, `17` <dbl>, `18` <dbl>, `19` <dbl>,
#> #   `20` <dbl>, `21` <dbl>, `22` <dbl>, `23` <dbl>, `24` <dbl>,
#> #   `25` <dbl>, `26` <dbl>, `27` <dbl>, `28` <dbl>, `29` <dbl>,
#> #   `30` <dbl>, `31` <dbl>, `32` <dbl>, `33` <dbl>, `34` <dbl>,
#> #   `35` <dbl>, `36` <dbl>, `37` <dbl>, `38` <dbl>, `39` <dbl>,
#> #   `40` <dbl>, `41` <dbl>, `42` <dbl>, `43` <dbl>, `44` <dbl>,
#> #   `45` <dbl>, `46` <dbl>, `47` <dbl>, `48` <dbl>, `49` <dbl>,
#> #   `50` <dbl>, `51` <dbl>, `52` <dbl>, `53` <dbl>, `54` <dbl>,
#> #   `55` <dbl>, `56` <dbl>, `57` <dbl>, `58` <dbl>, `59` <dbl>,
#> #   `60` <dbl>, `61` <dbl>, `62` <dbl>, `63` <dbl>, `64` <dbl>,
#> #   `65` <dbl>, `66` <dbl>, `67` <dbl>, `68` <dbl>, `69` <dbl>,
#> #   `70` <dbl>, `71` <dbl>, `72` <dbl>, `73` <dbl>, `74` <dbl>,
#> #   `75` <dbl>, `76` <dbl>, `77` <dbl>, `78` <dbl>, `79` <dbl>,
#> #   `80` <dbl>, `81` <dbl>, `82` <dbl>, `83` <dbl>, `84` <dbl>,
#> #   `85` <dbl>, `86` <dbl>, `87` <dbl>, `88` <dbl>, `89` <dbl>,
#> #   `90` <dbl>, `91` <dbl>, `92` <dbl>, `93` <dbl>, `94` <dbl>,
#> #   `95` <dbl>, `96` <dbl>, `97` <dbl>, `98` <dbl>, `99` <dbl>,
#> #   `100` <dbl>, `101` <dbl>, `102` <dbl>, `103` <dbl>, `104` <dbl>,
#> #   `105` <dbl>, `106` <dbl>, `107` <dbl>, `108` <dbl>, `109` <dbl>,
#> #   `110` <dbl>, `111` <dbl>, ...

这里-Inf如果有在给定的一周该ID没有值返回。 或者,代替填充缺失的值NA ,它们可以填充有,例如0,使用complete(ID, Date = dt_merge$Dates, fill = list(Value = 0)) 这将使值变量0对于任何未观察到的ID和日期的组合。



文章来源: Grouping a data frame by dates: resolve missing time periods' bug