可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Given an array of two numbers, let them define the start and end of a range of numbers. For example, [2,6]
means the range 2,3,4,5,6. I want to write javascript code to find the least common multiple for the range. My code below works for small ranges only, not something like [1,13]
(which is the range 1,2,3,4,5,6,7,8,9,10,11,12,13), which causes a stack overflow. How can I efficiently find the least common multiple of a range?
function leastCommonMultiple(arr) {
var minn, max;
if ( arr[0] > arr[1] ) {
minn = arr[1];
max = arr[0];
} else {
minn = arr[0];
max = arr[1];
}
function repeatRecurse(min, max, scm) {
if ( scm % min === 0 && min < max ) {
return repeatRecurse(min+1, max, scm);
} else if ( scm % min !== 0 && min < max ) {
return repeatRecurse(minn, max, scm+max);
}
return scm;
}
return repeatRecurse(minn, max, max);
}
回答1:
I think this gets the job done.
function leastCommonMultiple(min, max) {
function range(min, max) {
var arr = [];
for (var i = min; i <= max; i++) {
arr.push(i);
}
return arr;
}
function gcd(a, b) {
return !b ? a : gcd(b, a % b);
}
function lcm(a, b) {
return (a * b) / gcd(a, b);
}
var multiple = min;
range(min, max).forEach(function(n) {
multiple = lcm(multiple, n);
});
return multiple;
}
leastCommonMultiple(1, 13); // => 360360
回答2:
function smallestCommons(arr) {
var max = Math.max(...arr);
var min = Math.min(...arr);
var candidate = max;
var smallestCommon = function(low, high) {
// inner function to use 'high' variable
function scm(l, h) {
if (h % l === 0) {
return h;
} else {
return scm(l, h + high);
}
}
return scm(low, high);
};
for (var i = min; i <= max; i += 1) {
candidate = smallestCommon(i, candidate);
}
return candidate;
}
smallestCommons([5, 1]); // should return 60
smallestCommons([1, 13]); // should return 360360
smallestCommons([23, 18]); //should return 6056820
回答3:
Mine is not as fancy as the other answers but I think it is easy to read.
function smallestCommons(arr) {
//order our array so we know which number is smallest and which is largest
var sortedArr = arr.sort(),
//the smallest common multiple that leaves no remainder when divided by all the numbers in the rang
smallestCommon = 0,
//smallest multiple will always be the largest number * 1;
multiple = sortedArr[1];
while(smallestCommon === 0) {
//check all numbers in our range
for(var i = sortedArr[0]; i <= sortedArr[1]; i++ ){
if(multiple % i !== 0 ){
//if we find even one value between our set that is not perfectly divisible, we can skip to the next multiple
break;
}
//if we make it all the way to the last value (sortedArr[1]) then we know that this multiple was perfectly divisible into all values in the range
if(i == sortedArr[1]){
smallestCommon = multiple;
}
}
//move to the next multiple, we can just add the highest number.
multiple += sortedArr[1];
}
console.log(smallestCommon);
return smallestCommon;
}
smallestCommons([1, 5]); // should return 60.
smallestCommons([5, 1]); // should return 60.
smallestCommons([1, 13]); // should return 360360.
smallestCommons([23, 18]); // should return 6056820.
Edit: Turned answer into snippet.
回答4:
LCM function for a range [a, b]
// Euclid algorithm for Greates Common Divisor
function gcd(a, b)
{
return !b ? a : gcd(b, a % b);
}
// Least Common Multiple function
function lcm(a, b)
{
return a * (b / gcd(a,b));
}
// LCM of all numbers in the range of arr=[a, b]
function range_lcm(arr)
{
// Swap [big, small] to [small, big]
if(arr[0] > arr[1]) (arr = [arr[1], arr[0]]);
for(x = result = arr[0]; x <= arr[1]; x++) {
result = lcm(x, result);
}
return result;
}
alert(range_lcm([8, 5])); // Returns 840
回答5:
This is a non-recursive version of your original approach.
function smallestCommons(arr) {
// Sort the array
arr = arr.sort(function (a, b) {return a - b}); // numeric comparison;
var min = arr[0];
var max = arr[1];
var numbers = [];
var count = 0;
//Here push the range of values into an array
for (var i = min; i <= max; i++) {
numbers.push(i);
}
//Here freeze a multiple candidate starting from the biggest array value - call it j
for (var j = max; j <= 1000000; j+=max) {
//I increase the denominator from min to max
for (var k = arr[0]; k <= arr[1]; k++) {
if (j % k === 0) { // every time the modulus is 0 increase a counting
count++; // variable
}
}
//If the counting variable equals the lenght of the range, this candidate is the least common value
if (count === numbers.length) {
return j;
}
else{
count = 0; // set count to 0 in order to test another candidate
}
}
}
alert(smallestCommons([1, 5]));
回答6:
function leastCommonMultiple(arr) {
/*
function range(min, max) {
var arr = [];
for (var i = min; i <= max; i++) {
arr.push(i);
}
return arr;
}
*/
var min, range;
range = arr;
if(arr[0] > arr[1]){
min = arr[1];
}
else{
min = arr[0]
}
function gcd(a, b) {
return !b ? a : gcd(b, a % b);
}
function lcm(a, b) {
return (a * b) / gcd(a, b);
}
var multiple = min;
range.forEach(function(n) {
multiple = lcm(multiple, n);
});
return multiple;
}
console.log( leastCommonMultiple([1, 13]) )
回答7:
Well played on the solution. I think I got one that might be abit shorter just for future reference but ill definatly look into yours
function LCM(arrayRange) {
var newArr = [];
for (var j = arrayRange[0]; j <= arrayRange[1]; j++){
newArr.push(j);
}
var a = Math.abs(newArr[0]);
for (var i = 1; i < newArr.length; i++) {
var b = Math.abs(newArr[i]),
c = a;
while (a && b) {
a > b ? a %= b : b %= a;
}
a = Math.abs(c * newArr[i] / (a + b))
}
return console.log(a);
}
LCM([1,5]);
回答8:
You may have originally had a stack overflow because of a typo: you switched between min
and minn
in the middle of repeatRecurse
(you would have caught that if repeatRecurse
hadn’t been defined in the outer function). With that fixed, repeatRecurse(1,13,13)
returns 156.
The obvious answer to avoiding a stack overflow is to turn a recursive function into a non-recursive function. You can accomplish that by doing:
function repeatRecurse(min, max, scm) {
while ( min < max ) {
while ( scm % min !== 0 ) {
scm += max;
}
min++;
}
}
But perhaps you can see the mistake at this point: you’re not ensuring that scm
is still divisible by the elements that came before min
. For example, repeatRecurse(3,5,5)=repeatRecurse(4,5,15)=20
. Instead of adding max
, you want to replace scm
with its least common multiple with min
. You can use rgbchris’s gcd (for integers, !b
is the same thing as b===0
). If you want to keep the tail optimization (although I don’t think any javascript engine has tail optimization), you’d end up with:
function repeatRecurse(min, max, scm) {
if ( min < max ) {
return repeatRecurse(min+1, max, lcm(scm,min));
}
return scm;
}
Or without the recursion:
function repeatRecurse(min,max,scm) {
while ( min < max ) {
scm = lcm(scm,min);
min++;
}
return scm;
}
This is essentially equivalent to rgbchris’s solution. A more elegant method may be divide and conquer:
function repeatRecurse(min,max) {
if ( min === max ) {
return min;
}
var middle = Math.floor((min+max)/2);
return lcm(repeatRecurse(min,middle),repeatRecurse(middle+1,max));
}
I would recommend moving away from the original argument being an array of two numbers. For one thing, it ends up causing you to talk about two different arrays: [min,max]
and the range array. For another thing, it would be very easy to pass a longer array and never realize you’ve done something wrong. It’s also requiring several lines of code to determine the min and max, when those should have been determined by the caller.
Finally, if you’ll be working with truly large numbers, it may be better to find the least common multiple using the prime factorization of the numbers.
回答9:
function range(min, max) {
var arr = [];
for (var i = min; i <= max; i++) {
arr.push(i);
}
return arr;
}
function gcd (x, y) {
return (x % y === 0) ? y : gcd(y, x%y);
}
function lcm (x, y) {
return (x * y) / gcd(x, y);
}
function lcmForArr (min, max) {
var arr = range(min, max);
return arr.reduce(function(x, y) {
return lcm(x, y);
});
}
range(10, 15); // [10, 11, 12, 13, 14, 15]
gcd(10, 15); // 5
lcm(10, 15); // 30
lcmForArr(10, 15); //60060
回答10:
How about:
// Euclid Algorithm for the Greatest Common Denominator
function gcd(a, b) {
return !b ? a : gcd(b, a % b);
}
// Euclid Algorithm for the Least Common Multiple
function lcm(a, b) {
return a * (b / gcd(a, b));
}
// LCM of all numbers in the range of arr = [a, b];
function smallestCommons(arr) {
var i, result;
// large to small - small to large
if (arr[0] > arr[1]) {
arr.reverse();
} // only happens once. Means that the order of the arr reversed.
for (i = result = arr[0]; i <= arr[1]; i++) { // all numbers up to arr[1] are arr[0].
result = lcm(i, result); // lcm() makes arr int an integer because of the arithmetic operator.
}
return result;
}
smallestCommons([5, 1]); // returns 60
回答11:
function lcm(arr) {
var max = Math.max(arr[0],arr[1]),
min = Math.min(arr[0],arr[1]),
lcm = max;
var calcLcm = function(a,b){
var mult=1;
for(var j=1; j<=a; j++){
mult=b*j;
if(mult%a === 0){
return mult;
}
}
};
for(var i=max-1;i>=min;i--){
lcm=calcLcm(i,lcm);
}
return lcm;
}
lcm([1,13]); //should return 360360.
回答12:
/*Function to calculate sequential numbers
in the range between the arg values, both inclusive.*/
function smallestCommons(arg1, arg2) {
if(arg1>arg2) { // Swap arg1 and arg2 if arg1 is greater than arg2
var temp = arg1;
arg1 = arg2;
arg2 =temp;
}
/*
Helper function to calculate greatest common divisor (gcd)
implementing Euclidean algorithm */
function gcd(a, b) {
return b===0 ? a : gcd(b, a % b);
}
/*
Helper function to calculate lowest common multiple (lcm)
of any two numbers using gcd function above */
function lcm(a,b){
return (a*b)/gcd(a,b);
}
var total = arg1; // copy min value
for(var i=arg1;i<arg2;i++){
total = lcm(total,i+1);
}
//return that total
return total;
}
/*Yes, there are many solutions that can get the job done.
Check this out, same approach but different view point.
*/
console.log(smallestCommons(13,1)); //360360