如何解除从要素列出了传递关系?(How to lift a transitive relation

2019-09-29 09:21发布

我想证明,在列表的元素传递关系相当于上列出了传递关系(在某些条件下)。

这是第一个引理:

lemma list_all2_rtrancl1:
  "(list_all2 P)⇧*⇧* xs ys ⟹
   list_all2 P⇧*⇧* xs ys"
  apply (induct rule: rtranclp_induct)
  apply (simp add: list.rel_refl)
  by (smt list_all2_trans rtranclp.rtrancl_into_rtrancl)

这里是一个对称的引理:

lemma list_all2_rtrancl2:
  "(⋀x. P x x) ⟹
   list_all2 P⇧*⇧* xs ys ⟹
   (list_all2 P)⇧*⇧* xs ys"
  apply (erule list_all2_induct)
  apply simp

我猜的关系应该是反思。 但是,也许我应该用另一种假设。 引理可以证明如果假定P是传递的,但是P是不可传递的。 我卡住了。 你可以建议选择什么样的假设,以及如何证明这个引理?

看来,鸡蛋里挑骨头给我的最后引理的特殊情况下,错误的反例( xs = [0]ys = [2]

lemma list_all2_rtrancl2_example:
  "list_all2 (λx y. x = y ∨ Suc x = y)⇧*⇧* xs ys ⟹
   (list_all2 (λx y. x = y ∨ Suc x = y))⇧*⇧* xs ys"
  nitpick

我可以证明引理适用于这个例子:

lemma list_all2_rtrancl2_example_0_2:
  "list_all2 (λx y. x = y ∨ Suc x = y)⇧*⇧* [0] [2] ⟹
   (list_all2 (λx y. x = y ∨ Suc x = y))⇧*⇧* [0] [2]"
  apply (rule_tac ?b="[1]" in converse_rtranclp_into_rtranclp; simp)
  apply (rule_tac ?b="[2]" in converse_rtranclp_into_rtranclp; simp)
  done

Answer 1:

这可能是使用可行listrel代替list_all2 。 实际上,如以下所示,它们是等效的(参见set_listrel_eq_list_all2 )。 不过,也有大约标准库的几个定理listrel没有它们的等价物的list_all2


theory so_htlatrfetl_2
  imports Complex_Main
begin

lemma set_listrel_eq_list_all2: 
  "listrel {(x, y). r x y} = {(xs, ys). list_all2 r xs ys}"
  using list_all2_conv_all_nth listrel_iff_nth by fastforce

lemma listrel_tclosure_1: "(listrel r)⇧* ⊆ listrel (r⇧*)"
  by (simp add: listrel_rtrancl_eq_rtrancl_listrel1 
      listrel_subset_rtrancl_listrel1 rtrancl_subset_rtrancl)

lemma listrel_tclosure_2: "refl r ⟹ listrel (r⇧*) ⊆ (listrel r)⇧*"
  by (simp add: listrel1_subset_listrel listrel_rtrancl_eq_rtrancl_listrel1 
      rtrancl_mono)

context includes lifting_syntax
begin

lemma listrel_list_all2_transfer [transfer_rule]:
  "((=) ===> (=) ===> (=) ===> (=)) 
  (λr xs ys. (xs, ys) ∈ listrel {(x, y). r x y}) list_all2"
  unfolding rel_fun_def using set_listrel_eq_list_all2 listrel_iff_nth by blast

end

lemma list_all2_rtrancl_1:
  "(list_all2 r)⇧*⇧* xs ys ⟹ list_all2 r⇧*⇧* xs ys"
proof(transfer)
  fix r :: "'a ⇒ 'a ⇒ bool"
  fix xs :: "'a list"
  fix ys:: "'a list"
  assume "(λxs ys. (xs, ys) ∈ listrel {(x, y). r x y})⇧*⇧* xs ys"
  then have "(xs, ys) ∈ (listrel {(x, y). r x y})⇧*"
    unfolding rtranclp_def rtrancl_def by auto  
  then have "(xs, ys) ∈ listrel ({(x, y). r x y}⇧*)" 
    using listrel_tclosure_1 by auto
  then show "(xs, ys) ∈ listrel {(x, y). r⇧*⇧* x y}"
    unfolding rtranclp_def rtrancl_def by auto  
qed

lemma list_all2_rtrancl_2:
  "reflp r ⟹ list_all2 r⇧*⇧* xs ys ⟹ (list_all2 r)⇧*⇧* xs ys"
proof(transfer)
  fix r :: "'a ⇒ 'a ⇒ bool"
  fix xs :: "'a list"
  fix ys :: "'a list"
  assume as_reflp: "reflp r" 
  assume p_in_lr: "(xs, ys) ∈ listrel {(x, y). r⇧*⇧* x y}"
  from as_reflp have refl: "refl {(x, y). r x y}" 
    using reflp_refl_eq by fastforce
  from p_in_lr have "(xs, ys) ∈ listrel ({(x, y). r x y}⇧*)"
    unfolding rtranclp_def rtrancl_def by auto
  with refl have "(xs, ys) ∈ (listrel {(x, y). r x y})⇧*"
    using listrel_tclosure_2 by auto
  then show "(λxs ys. (xs, ys) ∈ listrel {(x, y). r x y})⇧*⇧* xs ys" 
    unfolding rtranclp_def rtrancl_def by auto
qed

end

对于直接证明list_all2还提供(传统):

  1. list_all2_induct被施加到名单; 基本情况是微不足道的。 从那里,它仍然表明(LP)* x#xs y#ys如果(L (P*)) xs ys(LP)* xs ysP* xy
  2. 我们的想法是,它是有可能找到zs (如xs ),使得(LP) xs zs(LP)+ zs ys
  3. 然后,考虑到P* xyP xx基于所述传递属性,通过感应P*(LP) x#xs y#zs 。 因此,同样, (LP)* x#xs y#zs
  4. 此外,假定(LP)+ zs ysP yy ,通过感应, (LP)+ y#zs y#ys 。 因此,同样, (LP)* y#zs y#ys
  5. 从图3和4的结论(LP)* x#xs y#ys

theory so_htlatrfetl
imports  Complex_Main

begin

lemma list_all2_rtrancl2:
  assumes as_r: "(⋀x. P x x)" 
  shows "(list_all2 P⇧*⇧*) xs ys ⟹ (list_all2 P)⇧*⇧* xs ys"
proof(induction rule: list_all2_induct)
  case Nil then show ?case by simp
next
  case (Cons x xs y ys) show ?case
  proof -
    from as_r have lp_xs_xs: "list_all2 P xs xs" by (rule list_all2_refl)
    from Cons.hyps(1) have x_xs_y_zs: "(list_all2 P)⇧*⇧* (x#xs) (y#xs)"
    proof(induction rule: rtranclp_induct)
      case base then show ?case by simp
    next
      case (step y z) then show ?case 
      proof -
        have rt_step_2: "(list_all2 P)⇧*⇧* (y#xs) (z#xs)" 
          by (rule r_into_rtranclp, rule list_all2_Cons[THEN iffD2]) 
            (simp add: step.hyps(2) lp_xs_xs)
        from step.IH rt_step_2 show ?thesis by (rule rtranclp_trans) 
      qed      
    qed
    from Cons.IH have "(list_all2 P)⇧*⇧* (y#xs) (y#ys)"
    proof(induction rule: rtranclp_induct)
      case base then show ?case by simp
    next
      case (step ya za) show ?case
      proof -
        have rt_step_2: "(list_all2 P)⇧*⇧* (y#ya) (y#za)" 
          by (rule r_into_rtranclp, rule list_all2_Cons[THEN iffD2])     
            (simp add: step.hyps(2) as_r)
        from step.IH rt_step_2 show ?thesis by (rule rtranclp_trans)
      qed
    qed
    with x_xs_y_zs show ?thesis by simp
  qed
qed

end

作为一个方面说明,在我看来(我知道很少挑剔),鸡蛋里挑骨头不应该没有任何警告无效提供的反。 我认为,通常情况下,当nitpick “嫌疑人”是一个反例可能是无效的它通知的例子是“潜在的虚假”的用户。 这可能是有用的,如果这个问题没有得到其他地方的记录提交错误报告。



文章来源: How to lift a transitive relation from elements to lists?