能否请你帮我以下问题:我想解决两个未知数二阶方程和使用结果来绘制一个椭圆。 这里是我的功能:
fun = @(x) [x(1) x(2)]*V*[x(1) x(2)]'-c
V is 2x2
对称矩阵, c
是正的常数,并且存在两个未知数, x1
和x2
。 如果我解决使用fsolve等式中,我注意到,解决的办法是为初始值非常敏感
fsolve(fun, [1 1])
是否有可能得到解决这个等式不提供一个确切的初始值,而是一个范围? 例如,我想看到的可能组合x1, x2 \in (-4,4)
使用ezplot
我获得所需的图形输出,但不是方程的解。
fh= @(x1,x2) [x1 x2]*V*[x1 x2]'-c;
ezplot(fh)
axis equal
有没有办法兼得? 非常感谢!
你可以把XData
和YData
从ezplot
:
c = rand;
V = rand(2);
V = V + V';
fh= @(x1,x2) [x1 x2]*V*[x1 x2]'-c;
h = ezplot(fh,[-4,4,-4,4]); % plot in range
axis equal
fun = @(x) [x(1) x(2)]*V*[x(1) x(2)]'-c;
X = fsolve(fun, [1 1]); % specific solution
hold on;
plot(x(1),x(2),'or');
% possible solutions in range
x1 = h.XData;
x2 = h.YData;
或者您可以使用矢量输入到fsolve
:
c = rand;
V = rand(2);
V = V + V';
x1 = linspace(-4,4,100)';
fun2 = @(x2) sum(([x1 x2]*V).*[x1 x2],2)-c;
x2 = fsolve(fun2, ones(size(x1)));
% remove invalid values
tol = 1e-2;
x2(abs(fun2(x2)) > tol) = nan;
plot(x1,x2,'.b')
然而,最简单,最直接的方法是重新排列的椭圆形矩阵形式在一元二次方程的形式:
k = rand;
V = rand(2);
V = V + V';
a = V(1,1);
b = V(1,2);
c = V(2,2);
% rearange terms in the form of quadratic equation:
% a*x1^2 + (2*b*x2)*x1 + (c*x2^2) = k;
% a*x1^2 + (2*b*x2)*x1 + (c*x2^2 - k) = 0;
x2 = linspace(-4,4,1000);
A = a;
B = (2*b*x2);
C = (c*x2.^2 - k);
% solve regular quadratic equation
dicriminant = B.^2 - 4*A.*C;
x1_1 = (-B - sqrt(dicriminant))./(2*A);
x1_2 = (-B + sqrt(dicriminant))./(2*A);
x1_1(dicriminant < 0) = nan;
x1_2(dicriminant < 0) = nan;
% plot
plot(x1_1,x2,'.b')
hold on
plot(x1_2,x2,'.g')
hold off