import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread
img = imread('dog2.jpg')
#img is a shape of (360, 480, 3)
w = img.shape[0]
h = img.shape[1]
c = img.shape[2]
k = 3 # for my convenience
plt.subplot(1,2,1)
plt.imshow(img)
img = tf.cast(img, tf.float32)
img4d = tf.reshape(img,[1,w,h,c])
diag = np.array([[1,1,1],[0,0,0],[1,1,1]]*k, np.float32)
# diag = np.diag(diag)
diag4d = tf.reshape(diag,[k,k,c,1])
convolved = tf.nn.conv2d(img4d, diag4d, strides=[1,1,1,1], padding='SAME')
with tf.Session() as sess:
result = sess.run(convolved)
print result.shape
plt.subplot(1,2,2)
plt.imshow(np.squeeze(result))
plt.show()
我只是想使用卷积和初步应用一些模糊效果。 是的,我知道我的核心价值观是不正确的。 但我的问题是,我给,拥有3个频道的输入图像。 我怎么能得到3个信道的输出图像。 好。 我试过了。 但我得到的是一些单独一个引导值。