计算最近的观察的累积平均(Calculating cumulative mean of recent

2019-09-26 03:13发布

我的数据集有作为特征:玩家的ID,周和点。

我想计算点的平均值为之前的几个星期,但不是所有过去的几周,只是到了最后5个或更少(如果当前周小于5)。

例如:对于player_id = 5,周= 7,其结果将是点为player_id = 5和周2,3,4,5和6的平均值。

下面的代码已经做了平均历届星期,所以我需要一个适应,使之成为仅有5前一周持平。

player_id<-c(rep(1,30),rep(2,30),rep(3,30),rep(4,30),rep(5,30))
week<-1:30
points<-round(runif(150,1,10),0) 
mydata<- data.frame(player_id=player_id,week=rep(week,5),points)


mydata<-mydata %>% 
        group_by(player_id) %>%    # the group to perform the stat on
        arrange(week) %>%          # order the weeks within each group
        mutate(previous_mean = cummean(points) ) %>% # for each week get the 
cumulative mean
        mutate(previous_mean = lag(previous_mean) ) %>% # shift cumulative 
mean back one week
        arrange(player_id) # sort by player_id

Answer 1:

HAVB的做法是伟大的,但取决于你想要什么,这里是另一个。 这种方法是从适合这个答案到一个不同的问题,但改变了您的情况:

library(dplyr)
library(zoo)
# set the seed for reproducibility
set.seed(123)
player_id<-c(rep(1,30),rep(2,30),rep(3,30),rep(4,30),rep(5,30))
week<-1:30
points<-round(runif(150,1,10),0) 
mydata<- data.frame(player_id=player_id,week=rep(week,5),points)

roll_mean <- function(x, k) {
    result <- rollapplyr(x, k, mean, partial=TRUE, na.rm=TRUE)
    result[is.nan(result)] <- NA
    return( result )
}

mydata<- data.frame(player_id=player_id,week=rep(week,5),points)

mydata<-mydata %>% 
    group_by(player_id) %>%
    arrange(week) %>%
    mutate(rolling_mean = roll_mean(x=lag(points), k=5) ) %>%
    arrange(player_id)

然后,我们可以看一个子集,以显示它的工作:

mydata[mydata$player_id %in% 1:2 & mydata$week %in% 1:6, ]
# A tibble: 12 x 4
# Groups:   player_id [2]
   player_id  week points rolling_mean
       <dbl> <int>  <dbl>        <dbl>
 1         1     1      4           NA
 2         1     2      8     4.000000
 3         1     3      5     6.000000
 4         1     4      9     5.666667
 5         1     5      9     6.500000
 6         1     6      1     7.000000
 7         2     1     10           NA
 8         2     2      9    10.000000
 9         2     3      7     9.500000
10         2     4      8     8.666667
11         2     5      1     8.500000
12         2     6      5     7.000000

因此,我们可以在每个时间t看到, rolling_mean供玩家将是平均points的球员的意见有时【T - 1,...,分钟(1,T - 5)}。



Answer 2:

您可以使用slice只选择最后5周各组。 尝试这个:

player_id<-c(rep(1,30),rep(2,30),rep(3,30),rep(4,30),rep(5,30))
week<-1:30
points<-round(runif(150,1,10),0) 
mydata<- data.frame(player_id=player_id,week=rep(week,5),points)

library(dplyr)

mydata <- mydata %>% 
    group_by(player_id) %>%    # the group to perform the stat on
    arrange(week) %>% # order the weeks within each group
    slice( (n()-4):n() ) %>%  # "slice" the last 5 rows (weeks) of every group
    mutate(previous_mean = cummean(points) ) %>% # for each week get the cumulative mean
mutate(previous_mean = lag(previous_mean) ) %>% # shift cumulative mean back one week
arrange(player_id) # sort by player_id

该生产线

slice( (n()-4):n() )

选择[(最后一行 - 4):最后一行]的范围内的行,对每个组

编辑:为了避免麻烦,当本周小于5,使用ifelse语句来验证:

mydata %>% 
    group_by(player_id) %>%    # the group to perform the stat on
    arrange(week) %>% # order the weeks within each group
    slice(ifelse(n() < 5, 1:n(), n()-4):n()) %>%  # "slice" the last 5 rows (weeks) of every group
    mutate(previous_mean = cummean(points) ) %>% # for each week get the cumulative mean
    mutate(previous_mean = lag(previous_mean) ) %>% # shift cumulative mean back one week
    arrange(player_id) # sort by player_id


文章来源: Calculating cumulative mean of recent observations