数据结构进行快速查找GPS?(Data structure to perform fast GPS

2019-09-24 03:26发布

我有城市名称和GPS坐标的文本文件(UTF-8〜50K线)。 示例行:

San Pedro    locality   -3367   -5968   Argentina       Buenos Aires    San Pedro
Talagante    locality   -3366   -7093   Chile   Metropolitana   Talagante
Peñaflor     locality   -3362   -7092   Chile   Metropolitana   Talagante

第三和第四列是最后一列城市的GPS坐标。

给定一个坐标GPS,我需要找到衣柜里的城市。 我需要做的这数亿倍。 什么是一些工具,可以帮助我完成这个任务? 的Java / Python的解决方案将是理想的。

Answer 1:

你所寻找的是一个KD树 。 我发现了一个链接到一个Python实现它在这里,但我不Python开发,从来没有尝试过。 该KD树将寻找最近的点在一个平面上,这是也许你能得到的最好的复杂性平方根复杂性支持。 你能负担得起做大概一万次查询第二。

编辑:其实你的问题让我做一点更深入的研究。 也许正是被描述为在可能的方法,你会发现有用此页面 。 你感兴趣的是,对于近邻的许多查询提供最佳的解决方案。



Answer 2:

我会在SQLite数据库中存储这些记录。 有一个名为项目SpatiaLite ,增加了空间查询和类型上的SQLite的顶部。 这使您可以问这样的“给20米x的范围内的所有项目”数据库的东西。

如果你不想使用一个数据库,你可以使用一个四叉树 。 在Python几种实现。 四叉树分割的矩形空间分成4个部分,然后每细分部分成4个更多部分。 搜索是非常有效的。



Answer 3:

对于像你这样的几何查询请求(最近点)KD树是出色的数据结构。 除了不是非常艰难的实现。 我有一个Java实现。 不知道这将是多么高效为您服务。 这是我的任务。 Point2D和其他实用工具类实现此 。 您可以查看有其源代码。 RectHV需要另一个实用工具类。 这是我写的。

public class RectHV {
    private final double xmin, ymin;   // minimum x- and y-coordinates
    private final double xmax, ymax;   // maximum x- and y-coordinates

    // construct the axis-aligned rectangle [xmin, xmax] x [ymin, ymax]
    public RectHV(double xmin, double ymin, double xmax, double ymax) {
        if (xmax < xmin || ymax < ymin) {
            throw new IllegalArgumentException("Invalid rectangle");
        }
        this.xmin = xmin;
        this.ymin = ymin;
        this.xmax = xmax;
        this.ymax = ymax;
    }

    // accessor methods for 4 coordinates
    public double xmin() { return xmin; }
    public double ymin() { return ymin; }
    public double xmax() { return xmax; }
    public double ymax() { return ymax; }

    // width and height of rectangle
    public double width()  { return xmax - xmin; }
    public double height() { return ymax - ymin; }

    // does this axis-aligned rectangle intersect that one?
    public boolean intersects(RectHV that) {
        return this.xmax >= that.xmin && this.ymax >= that.ymin
            && that.xmax >= this.xmin && that.ymax >= this.ymin;
    }

    // draw this axis-aligned rectangle
    public void draw() {
        StdDraw.line(xmin, ymin, xmax, ymin);
        StdDraw.line(xmax, ymin, xmax, ymax);
        StdDraw.line(xmax, ymax, xmin, ymax);
        StdDraw.line(xmin, ymax, xmin, ymin);
    }

    // distance from p to closest point on this axis-aligned rectangle
    public double distanceTo(Point2D p) {
        return Math.sqrt(this.distanceSquaredTo(p));
    }

    // distance squared from p to closest point on this axis-aligned rectangle
    public double distanceSquaredTo(Point2D p) {
        double dx = 0.0, dy = 0.0;
        if      (p.x() < xmin) dx = p.x() - xmin;
        else if (p.x() > xmax) dx = p.x() - xmax;
        if      (p.y() < ymin) dy = p.y() - ymin;
        else if (p.y() > ymax) dy = p.y() - ymax;
        return dx*dx + dy*dy;
    }

    // does this axis-aligned rectangle contain p?
    public boolean contains(Point2D p) {
        return (p.x() >= xmin) && (p.x() <= xmax)
            && (p.y() >= ymin) && (p.y() <= ymax);
    }

    // are the two axis-aligned rectangles equal?
    public boolean equals(Object y) {
        if (y == this) return true;
        if (y == null) return false;
        if (y.getClass() != this.getClass()) return false;
        RectHV that = (RectHV) y;
        if (this.xmin != that.xmin) return false;
        if (this.ymin != that.ymin) return false;
        if (this.xmax != that.xmax) return false;
        if (this.ymax != that.ymax) return false;
        return true;
    }

    // return a string representation of this axis-aligned rectangle
    public String toString() {
        return "[" + xmin + ", " + xmax + "] x [" + ymin + ", " + ymax + "]";
    }

}

这里是KD树:

public class KdTree {

    private static class Node {
        private Point2D p;      // the point
        private RectHV rect;    // the axis-aligned rectangle corresponding to this node
        private Node lb;        // the left/bottom subtree
        private Node rt;        // the right/top subtree

        Node() {
            p = null;
            rect = null;
            lb = null;
            rt = null;
        }
    }

    private Node tree;
    private Point2D nearestPoint, infinitePoint;
    private int sz;
    private double nearestDist;


    // construct an empty set of points
    public KdTree() {
        tree = new Node();
        sz = 0;
        infinitePoint = new Point2D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
    }



    // is the set empty?
    public boolean isEmpty() {
        return (sz == 0);
    }



    // number of points in the set
    public int size() {
        return sz;
    }



    ////////////////////////////////////////////////
    // private function for inserting any element //
    ////////////////////////////////////////////////
    private void privateInsert( Node nd, Point2D p, int lv, double xmin, double ymin, double xmax, double ymax) {
        if(nd.p == null) {
          nd.p = p;
          nd.rect = new RectHV(xmin, ymin, xmax, ymax);
          nd.lb = new Node();
          nd.rt = new Node();
          sz = sz + 1;
        }
        else if( lv % 2 == 0 ) {
            double X = nd.p.x();
            double x = p.x();
            if( x <= X ) {
                xmax = X;
                privateInsert(nd.lb, p, lv+1, xmin, ymin, xmax, ymax);
            }
            else {
                xmin = X;
                privateInsert(nd.rt, p, lv+1, xmin, ymin, xmax, ymax);
            }
        }
        else {
            double Y = nd.p.y();
            double y = p.y();
            if( y <= Y ) {
                ymax = Y;
                privateInsert(nd.lb, p, lv+1, xmin, ymin, xmax, ymax);
            }
            else {
                ymin = Y;
                privateInsert(nd.rt, p, lv+1, xmin, ymin, xmax, ymax);
            }
        }
    }



    ////////////////////////////////////////////////
    // private function for searching any element //
    ////////////////////////////////////////////////
    private Node privateSearch( Node nd, Point2D p, int lv ) {
        if( nd.p == null ) return nd;
        else if( p.equals( nd.p ) == true ) return nd;
        if(lv % 2 == 0) {
            double X = nd.p.x();
            double x = p.x();
            if( x <= X ) {
                return privateSearch( nd.lb, p, lv+1 );
            }
            else {
                return privateSearch( nd.rt, p, lv+1);
            }
        }
        else {
            double Y = nd.p.y();
            double y = p.y();
            if( y <= Y ) {
                return privateSearch(nd.lb, p, lv+1);
            }
            else {
                return privateSearch(nd.rt, p, lv+1);
            }
        }
    }


    /////////////////////////////////////////////////
    // private function for drawing all the points //
    /////////////////////////////////////////////////
    private void privateDraw (Node nd) {
        if(nd.p == null) return;
        StdDraw.setPenColor(StdDraw.BLACK);
        StdDraw.setPenRadius(.01);
        double x = nd.p.x();
        double y = nd.p.y();
        StdDraw.point( x, y );
        privateDraw( nd.lb );
        privateDraw( nd.rt );
    }



    //////////////////////////////////////////
    // private function for range searching //
    //////////////////////////////////////////
    private void privateRange(Node nd, RectHV rect, Queue<Point2D> que){
        if(nd.p == null) return;
        if( rect.contains( nd.p ) == true ) que.enqueue( nd.p );
        if( nd.rect.intersects(rect) == true ) {
            privateRange(nd.lb, rect, que);
            privateRange(nd.rt, rect, que);
            return;
        }
        else return;
    }




    //////////////////////////////////////////////////////
    // private function for searching nearest neighbour //
    //////////////////////////////////////////////////////
    private void privateNearest( Node nd, Point2D p ) {
        if(nd.p == null) return;
        double d = p.distanceSquaredTo(nd.p);
        if(d < nearestDist) {
            nearestDist = d;
            nearestPoint = nd.p;
        }
        if(nd.lb.p != null && ( nd.lb.rect.distanceSquaredTo(p) < nearestDist) ) privateNearest(nd.lb, p);
        if(nd.rt.p != null && ( nd.rt.rect.distanceSquaredTo(p) < nearestDist) ) privateNearest(nd.rt, p);
    }



    // add the point p to the set (if it is not already in the set)
    public void insert(Point2D p) {
        if( contains( p ) == true ) {
            return;
        }
        else {
            privateInsert(tree, p, 0, 0.00, 0.00, 1.00, 1.00);
        }
    }



    // does the set contain the point p?
    public boolean contains(Point2D p) {
        Node nd = privateSearch(tree, p, 0);
        if(nd.p == null) return false;
        else return true;
    }



    // draw all of the points to standard draw
    public void draw() {
        privateDraw(tree);
    }



    // all points in the set that are inside the rectangle
    public Iterable<Point2D> range( RectHV rect ) {
        Queue<Point2D> que = new Queue<Point2D>();
        privateRange(tree, rect, que);
        return que;
    }



    // a nearest neighbor in the set to p; null if set is empty
    public Point2D nearest(Point2D p) {
        nearestPoint = infinitePoint;
        nearestDist = Double.POSITIVE_INFINITY;
        privateNearest(tree, p);
        return nearestPoint;
        //return p;
    }
}


Answer 4:

地理散列是给你的另一种选择,这是相当每一实施,高效快速。



文章来源: Data structure to perform fast GPS lookups?