Do you guys know where can I find examples of multiclass classification in Spark. I spent a lot of time searching in books and in the web, and so far I just know that it is possible since the latest version according the documentation.
问题:
回答1:
ML
(Recommended in Spark 2.0+)
We'll use the same data as in the MLlib below. There are two basic options. If Estimator
supports multilclass classification out-of-the-box (for example random forest) you can use it directly:
val trainRawDf = trainRaw.toDF
import org.apache.spark.ml.feature.{Tokenizer, CountVectorizer, StringIndexer}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.RandomForestClassifier
val transformers = Array(
new StringIndexer().setInputCol("group").setOutputCol("label"),
new Tokenizer().setInputCol("text").setOutputCol("tokens"),
new CountVectorizer().setInputCol("tokens").setOutputCol("features")
)
val rf = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
val model = new Pipeline().setStages(transformers :+ rf).fit(trainRawDf)
model.transform(trainRawDf)
If model supports only binary classification (logistic regression) and extends o.a.s.ml.classification.Classifier
you can use one-vs-rest strategy:
import org.apache.spark.ml.classification.OneVsRest
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
.setLabelCol("label")
.setFeaturesCol("features")
val ovr = new OneVsRest().setClassifier(lr)
val ovrModel = new Pipeline().setStages(transformers :+ ovr).fit(trainRawDf)
MLLib
According to the official documentation at this moment (MLlib 1.6.0) following methods support multiclass classification:
- logistic regression,
- decision trees,
- random forests,
- naive Bayes
At least some of the examples use multiclass classification:
- Naive Bayes example - 3 classes
- Logistic regression - 10 classes for classifier although only 2 in the example data
General framework, ignoring method specific arguments, is pretty much the same as for all the other methods in MLlib. You have to pre-processes your input to create either data frame with columns representing label
and features
:
root
|-- label: double (nullable = true)
|-- features: vector (nullable = true)
or RDD[LabeledPoint]
.
Spark provides broad range of useful tools designed to facilitate this process including Feature Extractors and Feature Transformers and pipelines.
You'll find a rather naive example of using Random Forest below.
First lets import required packages and create dummy data:
import sqlContext.implicits._
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
case class LabeledRecord(group: String, text: String)
val trainRaw = sc.parallelize(
LabeledRecord("foo", "foo v a y b foo") ::
LabeledRecord("bar", "x bar y bar v") ::
LabeledRecord("bar", "x a y bar z") ::
LabeledRecord("foobar", "foo v b bar z") ::
LabeledRecord("foo", "foo x") ::
LabeledRecord("foobar", "z y x foo a b bar v") ::
Nil
)
Now let's define required transformers and process train Dataset
:
// Tokenizer to process text fields
val tokenizer = new Tokenizer()
.setInputCol("text")
.setOutputCol("words")
// HashingTF to convert tokens to the feature vector
val hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("features")
.setNumFeatures(10)
// Indexer to convert String labels to Double
val indexer = new StringIndexer()
.setInputCol("group")
.setOutputCol("label")
.fit(trainRaw.toDF)
def transfom(rdd: RDD[LabeledRecord]) = {
val tokenized = tokenizer.transform(rdd.toDF)
val hashed = hashingTF.transform(tokenized)
val indexed = indexer.transform(hashed)
indexed
.select($"label", $"features")
.map{case Row(label: Double, features: Vector) =>
LabeledPoint(label, features)}
}
val train: RDD[LabeledPoint] = transfom(trainRaw)
Please note that indexer
is "fitted" on the train data. It simply means that categorical values used as the labels are converted to doubles
. To use classifier on a new data you have to transform it first using this indexer
.
Next we can train RF model:
val numClasses = 3
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 10
val featureSubsetStrategy = "auto"
val impurity = "gini"
val maxDepth = 4
val maxBins = 16
val model = RandomForest.trainClassifier(
train, numClasses, categoricalFeaturesInfo,
numTrees, featureSubsetStrategy, impurity,
maxDepth, maxBins
)
and finally test it:
val testRaw = sc.parallelize(
LabeledRecord("foo", "foo foo z z z") ::
LabeledRecord("bar", "z bar y y v") ::
LabeledRecord("bar", "a a bar a z") ::
LabeledRecord("foobar", "foo v b bar z") ::
LabeledRecord("foobar", "a foo a bar") ::
Nil
)
val test: RDD[LabeledPoint] = transfom(testRaw)
val predsAndLabs = test.map(lp => (model.predict(lp.features), lp.label))
val metrics = new MulticlassMetrics(predsAndLabs)
metrics.precision
metrics.recall
回答2:
Are you using Spark 1.6 rather than Spark 2.1? I think the problem is that in spark 2.1 the transform method returns a dataset, which can be implicitly converted to a typed RDD, where as prior to that, it returns a data frame or row.
Try as a diagnostic specifying the return type of the transform function as RDD[LabeledPoint] and see if you get the same error.