Finding Month on Month Turnover

2019-09-22 08:29发布

问题:

I seemed to be stuck at a very basic problem, I know its easy but I am not able to figure out.

So My data has HireDate and TermDate. TermDate is the last day of any employee.

I want to do as follow:

Leavers = Current Month Count taken from TermDate

Turnover for particular Month = Current Month Leavers / AVG (Row Count for Last Month and Current Month)

Reproduce Data

structure(list(HireDate = structure(c(17702, 13242, 16895, 17167, 12335, 13879, 12303, 13745, 14789, 16785, 15390, 17167, 12886, 13472, 15569, 13796, 16811, 11484, 13062, 17592, 16113, 13437, 15614, 17167, 17167, 16251, 17623, 13312, 14165, 17167, 17167, 10695, 15764, 13749, 16801, 17167, 13594, 13874, 17167, 17167, 13157, 17167, 12501, 13243, 12192, 12287, 12965, 13328, 17167, 13343, 17167, 17167, 11839, 17167, 13262, 13326, 14124, 16161, 17167, 17226, 12786, 13823, 13822, 13255, 17704, 17653, 12258, 12769, 13727, 10712, 17400, 13952, 14048, 14333, 17233, 17690, 13108, 13383, 13517, 13829, 17213, 13696, 16741, 17167, 17241, 12198, 14018, 12902, 16801, 17167, 17591, 12843, 13627, 14553, 15593, 16097, 16801, 13075, 13529, 17167), class = "Date"), TermDate = structure(c(NA, 13439, 17712, NA, 12880, 15408, 12877, 16493, 17135, 16944, 17135, NA, 14054, 15670, 17531, 14327, NA, 13889, NA, NA, 16741, 17135, 17620, 17620, 17354, 17316, NA, 13312, 17166, NA, NA, 15705, NA, 15112, NA, NA, 15705, 13970, 17655, NA, 13612, NA, 15418, 15917, 15705, NA, 14274, 13449, NA, 13559, 17417, NA, 14400, NA, NA, 14334, 14813, 16343, 17703, NA, 12824, 15711, 15411, 14484, NA, NA, NA, 15309, 16493, 17197, NA, 14911, 16957, 15882, NA, NA, 14435, 13768, 13517, 14907, NA, 17284, NA, NA, NA, 12772, 17166, NA, 16881, 17439, NA, 14944, NA, 15028, 16581, 16778, NA, 13788, 14064, 17620), class = "Date")), row.names = 14296:14395, class = "data.frame")

回答1:

A bit lengthy but it would work:

library(data.table)

df_leavers <- setDT(df)[, `:=` (TermDate = as.Date(as.character(TermDate)),
                                HireDate = as.Date(as.character(HireDate)))]

df_presences <- copy(df_leavers)

df_leavers <- df_leavers[, TermDate := format(TermDate, "%Y-%m")][!is.na(TermDate), (Leavers = .N), , by = TermDate]

df_presences <- df_presences[, maxTerm := max(TermDate, na.rm = T)][
  is.na(TermDate), TermDate := maxTerm][
    , .(YearMonth = format(seq(HireDate, TermDate, by = "month"), "%Y-%m")), by = 1:nrow(df)][
      , (Presences = .N), by = YearMonth]

df_final <- df_leavers[df_presences, on = .(TermDate = YearMonth)]

setnames(df_final, c("YearMonth", "Leavers", "Presences"))

df_final <- df_final[is.na(Leavers), Leavers := 0][order(YearMonth),][, previousMonth := shift(Presences)][
  is.na(previousMonth), previousMonth := 0][, AvgPresences := (Presences + previousMonth) / 2][
    , Turnover := round(Leavers / AvgPresences, 2)][, "previousMonth" := NULL]

Output (beginning and end of dataset):

     YearMonth Leavers Presences AvgPresences Turnover
  1:   1999-04       0         1          0.5     0.00
  2:   1999-05       0         2          1.5     0.00
  3:   1999-06       0         2          2.0     0.00
  4:   1999-07       0         2          2.0     0.00
  5:   1999-08       0         2          2.0     0.00
 ---                                                  
227:   2018-02       0        32         32.5     0.00
228:   2018-03       3        36         34.0     0.09
229:   2018-04       0        33         34.5     0.00
230:   2018-05       1        34         33.5     0.03
231:   2018-06       2        36         35.0     0.06


回答2:

library(dplyr)
df %>% 
  mutate(leavemonth=strftime(TermDate,format="%m-%Y")) %>% 
  group_by(leavemonth) %>% 
  summarize(n=n())

# A tibble: 51 x 2
   leavemonth     n
   <chr>      <int>
 1 01-2007        1
 2 01-2008        1
 3 01-2009        1
 4 01-2013        1
 5 01-2017        1
 6 02-2005        1
 7 02-2007        1
 8 02-2011        1
 9 02-2015        2
10 03-2009        2
# ... with 41 more rows

I create a column with a unique identifier for the month-year of the termination date of each row, then count them using summarize.

If you'd like to just add n to the existing table, we can replace the summarize with add_count:

df %>% 
  mutate(leavemonth=strftime(TermDate,format="%m-%Y")) %>% 
  add_count(leavemonth)

# A tibble: 100 x 4
   HireDate   TermDate   leavemonth     n
   <date>     <date>     <chr>      <int>
 1 2018-06-20 NA         NA            34
 2 2006-04-04 2006-10-18 10-2006        2
 3 2016-04-04 2018-06-30 06-2018        2
 4 2017-01-01 NA         NA            34
 5 2003-10-10 2005-04-07 04-2005        2
 6 2008-01-01 2012-03-09 03-2012        3
 7 2003-09-08 2005-04-04 04-2005        2
 8 2007-08-20 2015-02-27 02-2015        2
 9 2010-06-29 2016-11-30 11-2016        3
10 2015-12-16 2016-05-23 05-2016        1
# ... with 90 more rows


标签: r dplyr