找到字符串列表最好的子集,以匹配给定的字符串(find best subset from list

2019-09-22 09:06发布

我有一个字符串

s = "mouse"

和字符串列表

sub_strings = ["m", "o", "se", "e"]

我需要找出什么是sub_strings最好的和最短的匹配子集匹配是清单。 做这个的最好方式是什么? 理想的结果将是[“M”,“O”,“SE”]因为他们一起拼莫斯

Answer 1:

您可以使用正则表达式:

import re

def matches(s, sub_strings):
    sub_strings = sorted(sub_strings, key=len, reverse=True)
    pattern = '|'.join(re.escape(substr) for substr in sub_strings)
    return re.findall(pattern, s)

这至少是短而快,但它并不一定能找到匹配的最佳设置; 实在是太贪婪。 例如,

matches("bears", ["bea", "be", "ars"])

返回["bea"] ,当它应该返回["be", "ars"]


代码的说明:

  • 第一行按长度排序的子串,使最长的字符串出现在列表的开始。 这确保了正则表达式将会倾向于更长的匹配在较短的。

  • 第二行创建一个正则表达式模式包括所有的子串,由分离| 符号,这意味着“或”。

  • 第三行只是使用re.findall功能找到在给定的字符串模式的所有比赛s



Answer 2:

import difflib
print difflib.get_close_matches(target_word,list_of_possibles)

但不幸的是它不会对你的工作,例如上面你可以使用编辑距离,而不是...

def levenshtein_distance(first, second):
    """Find the Levenshtein distance between two strings."""
    if len(first) > len(second):
        first, second = second, first
    if len(second) == 0:
        return len(first)
    first_length = len(first) + 1
    second_length = len(second) + 1
    distance_matrix = [[0] * second_length for x in range(first_length)]
    for i in range(first_length):
       distance_matrix[i][0] = i
    for j in range(second_length):
       distance_matrix[0][j]=j
    for i in xrange(1, first_length):
        for j in range(1, second_length):
            deletion = distance_matrix[i-1][j] + 1
            insertion = distance_matrix[i][j-1] + 1
            substitution = distance_matrix[i-1][j-1]
            if first[i-1] != second[j-1]:
                substitution += 1
            distance_matrix[i][j] = min(insertion, deletion, substitution)
    return distance_matrix[first_length-1][second_length-1]

sub_strings = ["mo", "m,", "o", "se", "e"]
s="mouse"
print sorted(sub_strings,key = lambda x:levenshtein_distance(x,s))[0]

这将永远给你的“最接近”二字来你的目标(为最近的一些定义)

HTTP://www.korokithakis.net/posts/finding-the-levenshtein-distance-in-python/莱文斯坦功能被盗



Answer 3:

该解决方案是基于此答案由用户野兽 。 它采用了acora包斯特凡Behnel高效地找到使用对象的子串的所有比赛阿霍Corasick算法 ,然后使用动态编程来找到答案。

import acora
import collections

def best_match(target, substrings):
    """
    Find the best way to cover the string `target` by non-overlapping
    matches with strings taken from `substrings`. Return the best
    match as a list of substrings in order. (The best match is one
    that covers the largest number of characters in `target`, and
    among all such matches, the one using the fewest substrings.)

    >>> best_match('mouse', ['mo', 'ou', 'us', 'se'])
    ['mo', 'us']
    >>> best_match('aaaaaaa', ['aa', 'aaa'])
    ['aaa', 'aa', 'aa']
    >>> best_match('abracadabra', ['bra', 'cad', 'dab'])
    ['bra', 'cad', 'bra']
    """
    # Find all occurrences of the substrings in target and store them
    # in a dictionary by their position.
    ac = acora.AcoraBuilder(*substrings).build()
    matches = collections.defaultdict(set)
    for match, pos in ac.finditer(target):
        matches[pos].add(match)

    n = len(target)
    # Array giving the best (score, list of matches) found so far, for
    # each initial substring of the target.
    best = [(0, []) for _ in xrange(n + 1)]
    for i in xrange(n):
        bi = best[i]
        bj = best[i + 1]
        if bi[0] > bj[0] or bi[0] == bj[0] and len(bi[1]) < bj[1]:
            best[i + 1] = bi
        for m in matches[i]:
            j = i + len(m)
            bj = best[j]
            score = bi[0] + len(m)
            if score > bj[0] or score == bj[0] and len(bi[1]) < len(bj[1]):
                best[j] = (score, bi[1] + [m])
    return best[n][1]


文章来源: find best subset from list of strings to match a given string