This is how my dataframe looks like at the moment
+------------+
| DATE |
+------------+
| 19931001|
| 19930404|
| 19930603|
| 19930805|
+------------+
I am trying to reformat this string value to yyyy-mm-dd hh:mm:ss.fff and keep it as a string not a date type or time stamp.
How would I do that using the withColumn method ?
Here is the solution using UDF
and withcolumn
, I have assumed that you have a string date field in Dataframe
//Create dfList dataframe
val dfList = spark.sparkContext
.parallelize(Seq("19931001","19930404", "19930603", "19930805")).toDF("DATE")
dfList.withColumn("DATE", dateToTimeStamp($"DATE")).show()
val dateToTimeStamp = udf((date: String) => {
val stringDate = date.substring(0,4)+"/"+date.substring(4,6)+"/"+date.substring(6,8)
val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
format.format(new SimpleDateFormat("yyy/MM/dd").parse(stringDate))
})
withClumn("date",
from_unixtime(unix_timestamp($"date", "yyyyMMdd"), "yyyy-MM-dd hh:mm:ss.fff") as "date")
this should work.
Another notice is the that mm
gives minutes and MM
gives months, hope this help you.
First, I created this DF:
val df = sc.parallelize(Seq("19931001","19930404","19930603","19930805")).toDF("DATE")
For date management we are going to use joda time Library (don't forget to join the joda-time.jar file)
import org.joda.time.format.DateTimeFormat
import org.joda.time.format.DateTimeFormatter
def func(s:String):String={
val dateFormat = DateTimeFormat.forPattern("yyyymmdd");
val resultDate = dateFormat.parseDateTime(s);
return resultDate.toString();
}
Finally, apply the function to dataframe:
val temp = df.map(l => func(l.get(0).toString()))
val df2 = temp.toDF("DATE")
df2.show()
This answer still needs some work, me myself is new to spark, but it is getting the job done, I think!