The increase in network size is not the cause(problem)
here is my code
for i in [32, 64, 128, 256, 512]:
for j in [32, 64, 128, 256, 512]:
for k in [32, 64, 128, 256, 512]:
for l in [0.1, 0.2, 0.3, 0.4, 0.5]:
model = Sequential()
model.add(Dense(i))
model.add(Dropout(l))
model.add(Dense(j))
model.add(Dropout(l))
model.add(Dense(k))
model.add(Dropout(l))
model.compile(~)
hist = model.fit(~)
plt.savefig(str(count) + '.png')
plt.clf()
f = open(str(count) + '.csv', 'w')
text = ~
f.write(text)
f.close()
count+=1
print()
print("count :" + str(count))
print()
I started count
to 0
when count
is 460~ 479 the epoch time is
Train on 7228 samples, validate on 433 samples
Epoch 1/10
- 2254s - loss: 0.0045 - acc: 1.3835e-04 - val_loss: 0.0019 - val_acc: 0.0000e+00
Epoch 2/10
- 86s - loss: 0.0020 - acc: 1.3835e-04 - val_loss: 0.0030 - val_acc: 0.0000e+00
Epoch 3/10
- 85s - loss: 0.0017 - acc: 1.3835e-04 - val_loss: 0.0016 - val_acc: 0.0000e+00
Epoch 4/10
- 86s - loss: 0.0015 - acc: 1.3835e-04 - val_loss: 1.6094e-04 - val_acc: 0.0000e+00
Epoch 5/10
- 86s - loss: 0.0014 - acc: 1.3835e-04 - val_loss: 1.4120e-04 - val_acc: 0.0000e+00
Epoch 6/10
- 85s - loss: 0.0013 - acc: 1.3835e-04 - val_loss: 3.8155e-04 - val_acc: 0.0000e+00
Epoch 7/10
- 85s - loss: 0.0012 - acc: 1.3835e-04 - val_loss: 4.1694e-04 - val_acc: 0.0000e+00
Epoch 8/10
- 85s - loss: 0.0012 - acc: 1.3835e-04 - val_loss: 4.8163e-04 - val_acc: 0.0000e+00
Epoch 9/10
- 86s - loss: 0.0011 - acc: 1.3835e-04 - val_loss: 3.8670e-04 - val_acc: 0.0000e+00
Epoch 10/10
- 85s - loss: 9.9018e-04 - acc: 1.3835e-04 - val_loss: 0.0016 - val_acc: 0.0000e+00
but when I restart pycharm and count
is 480
epoch time is
Train on 7228 samples, validate on 433 samples
Epoch 1/10
- 151s - loss: 0.0071 - acc: 1.3835e-04 - val_loss: 0.0018 - val_acc: 0.0000e+00
Epoch 2/10
- 31s - loss: 0.0038 - acc: 1.3835e-04 - val_loss: 0.0014 - val_acc: 0.0000e+00
Epoch 3/10
- 32s - loss: 0.0031 - acc: 1.3835e-04 - val_loss: 2.0248e-04 - val_acc: 0.0000e+00
Epoch 4/10
- 32s - loss: 0.0026 - acc: 1.3835e-04 - val_loss: 3.7600e-04 - val_acc: 0.0000e+00
Epoch 5/10
- 32s - loss: 0.0021 - acc: 1.3835e-04 - val_loss: 4.3882e-04 - val_acc: 0.0000e+00
Epoch 6/10
- 32s - loss: 0.0020 - acc: 1.3835e-04 - val_loss: 0.0037 - val_acc: 0.0000e+00
Epoch 7/10
- 32s - loss: 0.0021 - acc: 1.3835e-04 - val_loss: 1.2072e-04 - val_acc: 0.0000e+00
Epoch 8/10
- 32s - loss: 0.0019 - acc: 1.3835e-04 - val_loss: 0.0031 - val_acc: 0.0000e+00
Epoch 9/10
- 33s - loss: 0.0018 - acc: 1.3835e-04 - val_loss: 0.0051 - val_acc: 0.0000e+00
Epoch 10/10
- 33s - loss: 0.0018 - acc: 1.3835e-04 - val_loss: 3.2728e-04 - val_acc: 0.0000e+00
I just started it again, but the epoch time was faster.
I don't know why this happened.
In the Python 3.6 version, I use tensorflow-gpu 1.13.1 version, and Cuda uses 10.0 version. OS is a Windows 10 1903 pro version and OS build uses 18362.239 Pycharm uses a 2019.1.1 community version.
I just used the for loop, and I wonder why this happened.
I changed the number of units in the for loop.
I also saved the figure with a plt.savefig, and saved the data in .csv format.
And I also ask how to solve it.