I am training my own image set using Tensorflow for Poets as an example,
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
What size do the images need to be. I have read that the script automatically resizes the image for you, but what size does it resize them to. Can you preresize your images to this to save on your disk space (10,000 1mb images).
How does it crop the images, does it chop off part of your image, or add white/black bars, or change the aspect ratio?
Also, I think Inception v3 uses 299x299 images, what if your image recogition requires more detailed accuracy, is it possible to increase the networks image size, like to 598x598?
I don't know what re-sizing option this implementation uses; if you haven't found that in the documentation, then I expect that we'd need to read the code.
The images can be of any size. Yes, you can shrink your images to save disk space. However, note that you lose image detail; there won't be a way to recover the lost information.
The good news is that you shouldn't need it; CNN models are built for an image size that contains enough detail to handle the problem at hand. Greater image detail generally does not translate to greater accuracy in classification. Doubling the image resolution is usually a waste of storage.
To do that, you'd have to edit the code to accept the larger "native" image size. Then you'd have to alter the model topology to account for the greater input size: either a larger step-down factor somewhere (which could defeat the greater resolution), or another layer on the model to capture the larger size.
To get a more accurate model, you generally need a stronger network topology. 2x resolution does not give us much more information to differentiate a horse from a school bus.