I have a table that has looks like this ...
ticker,price1y,price2y,price3y,price5y,
aapl,12,23,47,69,
tsla,-9,24,54,190,
att,-10,23,34,35,
I would like to plot these using pandas plotly in dash to show price1y price2y ... price5y along the x axis and % change up the y axis. i need to be able to select multiple values to add to the graph using dash's callback feature.
i currently create a dash_core_components graph however i have been unsuccessfully in plotting to this.
app.layout = html.Div([
html.Div([
dcc.Graph(
id='bar-graph'
)
], className='twelve columns')
Thanks,
You can use grouped bar chart from plotly:
Do the imports:
import plotly.plotly as py
import plotly.graph_objs as go
Example dataframe:
data = {
'ticker': ['aapl', 'tsla', 'att'],
'price1y': [12 ,-9 ,-10],
'price2y': [23 ,24 ,23],
'price3y': [47 ,54 ,34],
'price5y': [69 ,190 ,35]
}
df = pd.DataFrame(data).set_index('ticker')
Looks like:
price1y price2y price3y price5y
ticker
aapl 12 23 47 69
tsla -9 24 54 190
att -10 23 34 35
Then you can iterate over the columns and dynamically create the data for the grouped bar chart:
res = []
for col in df.columns:
res.append(
go.Bar(
x=df.index.values.tolist(),
y=df[col].values.tolist(),
name=col
)
)
layout = go.Layout(
barmode='group'
)
fig = go.Figure(data=res, layout=layout)
py.iplot(fig, filename='grouped-bar')
This will produce:
In order to get that in Dash, you'll need to return the above from a callback.