I read a csv file into a pandas dataframe, and would like to convert the columns with binary answers from strings of yes/no to integers of 1/0. Below, I show one of such columns ("sampleDF" is the pandas dataframe).
In [13]: sampleDF.housing[0:10]
Out[13]:
0 no
1 no
2 yes
3 no
4 no
5 no
6 no
7 no
8 yes
9 yes
Name: housing, dtype: object
Help is much appreciated!
method 1
sample.housing.eq('yes').mul(1)
method 2
pd.Series(np.where(sample.housing.values == 'yes', 1, 0),
sample.index)
method 3
sample.housing.map(dict(yes=1, no=0))
method 4
pd.Series(map(lambda x: dict(yes=1, no=0)[x],
sample.housing.values.tolist()), sample.index)
method 5
pd.Series(np.searchsorted(['no', 'yes'], sample.housing.values), sample.index)
All yield
0 0
1 0
2 1
3 0
4 0
5 0
6 0
7 0
8 1
9 1
timing
given sample
timing
long sample
sample = pd.DataFrame(dict(housing=np.random.choice(('yes', 'no'), size=100000)))
Try this:
sampleDF['housing'] = sampleDF['housing'].map({'yes': 1, 'no': 0})
# produces True/False
sampleDF['housing'] = sampleDF['housing'] == 'yes'
The above returns True/False values which are essentially 1/0, respectively. Booleans support sum functions, etc. If you really need it to be 1/0 values, you can use the following.
housing_map = {'yes': 1, 'no': 0}
sampleDF['housing'] = sampleDF['housing'].map(housing_map)
%timeit
sampleDF['housing'] = sampleDF['housing'].apply(lambda x: 0 if x=='no' else 1)
1.84 ms ± 56.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Replaces 'yes' with 1, 'no' with 0 for the df column specified.
Generic way:
import pandas as pd
string_data = string_data.astype('category')
numbers_data = string_data.cat.codes
reference:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.astype.html
Try the following:
sampleDF['housing'] = sampleDF['housing'].str.lower().replace({'yes': 1, 'no': 0})