A k skipgram is an ngram which is a superset of all ngrams and each (k-i )skipgram till (k-i)==0 (which includes 0 skip grams). So how to efficiently compute these skipgrams in python?
Following is the code i tried but it is not doing as expected:
<pre>
input_list = ['all', 'this', 'happened', 'more', 'or', 'less']
def find_skipgrams(input_list, N,K):
bigram_list = []
nlist=[]
K=1
for k in range(K+1):
for i in range(len(input_list)-1):
if i+k+1<len(input_list):
nlist=[]
for j in range(N+1):
if i+k+j+1<len(input_list):
nlist.append(input_list[i+k+j+1])
bigram_list.append(nlist)
return bigram_list
</pre>
The above code is not rendering correctly, but print find_skipgrams(['all', 'this', 'happened', 'more', 'or', 'less'],2,1)
gives following output
[['this', 'happened', 'more'], ['happened', 'more', 'or'], ['more',
'or', 'less'], ['or', 'less'], ['less'], ['happened', 'more', 'or'],
['more', 'or', 'less'], ['or', 'less'], ['less'], ['less']]
The code listed here also does not give correct output:
https://github.com/heaven00/skipgram/blob/master/skipgram.py
print skipgram_ndarray("What is your name") gives:
['What,is', 'is,your', 'your,name', 'name,', 'What,your', 'is,name']
name is a unigram!
From the paper that OP links, the following string:
Insurgents killed in ongoing fighting
Yields:
2-skip-bi-grams = {insurgents killed, insurgents in, insurgents
ongoing, killed in, killed ongoing, killed fighting, in ongoing, in
fighting, ongoing fighting}
2-skip-tri-grams = {insurgents killed in, insurgents killed ongoing,
insurgents killed fighting, insurgents in ongoing, insurgents in
fighting, insurgents ongoing fighting, killed in ongoing, killed in
fighting, killed ongoing fighting, in ongoing fighting}.
With slight modification to NLTK's ngrams
code (https://github.com/nltk/nltk/blob/develop/nltk/util.py#L383):
from itertools import chain, combinations
import copy
from nltk.util import ngrams
def pad_sequence(sequence, n, pad_left=False, pad_right=False, pad_symbol=None):
if pad_left:
sequence = chain((pad_symbol,) * (n-1), sequence)
if pad_right:
sequence = chain(sequence, (pad_symbol,) * (n-1))
return sequence
def skipgrams(sequence, n, k, pad_left=False, pad_right=False, pad_symbol=None):
sequence_length = len(sequence)
sequence = iter(sequence)
sequence = pad_sequence(sequence, n, pad_left, pad_right, pad_symbol)
if sequence_length + pad_left + pad_right < k:
raise Exception("The length of sentence + padding(s) < skip")
if n < k:
raise Exception("Degree of Ngrams (n) needs to be bigger than skip (k)")
history = []
nk = n+k
# Return point for recursion.
if nk < 1:
return
# If n+k longer than sequence, reduce k by 1 and recur
elif nk > sequence_length:
for ng in skipgrams(list(sequence), n, k-1):
yield ng
while nk > 1: # Collects the first instance of n+k length history
history.append(next(sequence))
nk -= 1
# Iterative drop first item in history and picks up the next
# while yielding skipgrams for each iteration.
for item in sequence:
history.append(item)
current_token = history.pop(0)
# Iterates through the rest of the history and
# pick out all combinations the n-1grams
for idx in list(combinations(range(len(history)), n-1)):
ng = [current_token]
for _id in idx:
ng.append(history[_id])
yield tuple(ng)
# Recursively yield the skigrams for the rest of seqeunce where
# len(sequence) < n+k
for ng in list(skipgrams(history, n, k-1)):
yield ng
Let's do some doctest to match the example in the paper:
>>> two_skip_bigrams = list(skipgrams(text, n=2, k=2))
[('Insurgents', 'killed'), ('Insurgents', 'in'), ('Insurgents', 'ongoing'), ('killed', 'in'), ('killed', 'ongoing'), ('killed', 'fighting'), ('in', 'ongoing'), ('in', 'fighting'), ('ongoing', 'fighting')]
>>> two_skip_trigrams = list(skipgrams(text, n=3, k=2))
[('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]
But do note that if n+k > len(sequence)
, it will yield the same effects as skipgrams(sequence, n, k-1)
(this is not a bug, it's a fail safe feature), e.g.
>>> three_skip_trigrams = list(skipgrams(text, n=3, k=3))
>>> three_skip_fourgrams = list(skipgrams(text, n=4, k=3))
>>> four_skip_fourgrams = list(skipgrams(text, n=4, k=4))
>>> four_skip_fivegrams = list(skipgrams(text, n=5, k=4))
>>>
>>> print len(three_skip_trigrams), three_skip_trigrams
10 [('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]
>>> print len(three_skip_fourgrams), three_skip_fourgrams
5 [('Insurgents', 'killed', 'in', 'ongoing'), ('Insurgents', 'killed', 'in', 'fighting'), ('Insurgents', 'killed', 'ongoing', 'fighting'), ('Insurgents', 'in', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing', 'fighting')]
>>> print len(four_skip_fourgrams), four_skip_fourgrams
5 [('Insurgents', 'killed', 'in', 'ongoing'), ('Insurgents', 'killed', 'in', 'fighting'), ('Insurgents', 'killed', 'ongoing', 'fighting'), ('Insurgents', 'in', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing', 'fighting')]
>>> print len(four_skip_fivegrams), four_skip_fivegrams
1 [('Insurgents', 'killed', 'in', 'ongoing', 'fighting')]
This allows n == k
but it disallow n > k
as shown in the lines :
if n < k:
raise Exception("Degree of Ngrams (n) needs to be bigger than skip (k)")
For understanding sake, let's try to understand the "mystical" line:
for idx in list(combinations(range(len(history)), n-1)):
pass # Do something
Given a list of unique items, combinations produce this:
>>> from itertools import combinations
>>> x = [0,1,2,3,4,5]
>>> list(combinations(x,2))
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]
And since the indices of a list of tokens is always unique, e.g.
>>> sent = ['this', 'is', 'a', 'foo', 'bar']
>>> current_token = sent.pop(0) # i.e. 'this'
>>> range(len(sent))
[0,1,2,3]
It's possible to compute the possible combinations (without replacement) of the range:
>>> n = 3
>>> list(combinations(range(len(sent)), n-1))
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
If we map the indices back to the list of tokens:
>>> [tuple(sent[id] for id in idx) for idx in combinations(range(len(sent)), 2)
[('is', 'a'), ('is', 'foo'), ('is', 'bar'), ('a', 'foo'), ('a', 'bar'), ('foo', 'bar')]
Then we concatenate with the current_token
, we get the skipgrams for the current token and context+skip window:
>>> [tuple([current_token]) + tuple(sent[id] for id in idx) for idx in combinations(range(len(sent)), 2)]
[('this', 'is', 'a'), ('this', 'is', 'foo'), ('this', 'is', 'bar'), ('this', 'a', 'foo'), ('this', 'a', 'bar'), ('this', 'foo', 'bar')]
So after that we move on to the next word.
EDITED
The latest NLTK version 3.2.5 has the skipgrams
implemented.
Here's a cleaner implementation from @jnothman from the NLTK repo: https://github.com/nltk/nltk/blob/develop/nltk/util.py#L538
def skipgrams(sequence, n, k, **kwargs):
"""
Returns all possible skipgrams generated from a sequence of items, as an iterator.
Skipgrams are ngrams that allows tokens to be skipped.
Refer to http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
:param sequence: the source data to be converted into trigrams
:type sequence: sequence or iter
:param n: the degree of the ngrams
:type n: int
:param k: the skip distance
:type k: int
:rtype: iter(tuple)
"""
# Pads the sequence as desired by **kwargs.
if 'pad_left' in kwargs or 'pad_right' in kwargs:
sequence = pad_sequence(sequence, n, **kwargs)
# Note when iterating through the ngrams, the pad_right here is not
# the **kwargs padding, it's for the algorithm to detect the SENTINEL
# object on the right pad to stop inner loop.
SENTINEL = object()
for ngram in ngrams(sequence, n + k, pad_right=True, right_pad_symbol=SENTINEL):
head = ngram[:1]
tail = ngram[1:]
for skip_tail in combinations(tail, n - 1):
if skip_tail[-1] is SENTINEL:
continue
yield head + skip_tail
[out]:
>>> from nltk.util import skipgrams
>>> sent = "Insurgents killed in ongoing fighting".split()
>>> list(skipgrams(sent, 2, 2))
[('Insurgents', 'killed'), ('Insurgents', 'in'), ('Insurgents', 'ongoing'), ('killed', 'in'), ('killed', 'ongoing'), ('killed', 'fighting'), ('in', 'ongoing'), ('in', 'fighting'), ('ongoing', 'fighting')]
>>> list(skipgrams(sent, 3, 2))
[('Insurgents', 'killed', 'in'), ('Insurgents', 'killed', 'ongoing'), ('Insurgents', 'killed', 'fighting'), ('Insurgents', 'in', 'ongoing'), ('Insurgents', 'in', 'fighting'), ('Insurgents', 'ongoing', 'fighting'), ('killed', 'in', 'ongoing'), ('killed', 'in', 'fighting'), ('killed', 'ongoing', 'fighting'), ('in', 'ongoing', 'fighting')]